Selenium is an umbrella project for a range of tools and libraries
that enable and support the automation of web browsers.
It provides extensions to emulate user interaction with browsers,
a distribution server for scaling browser allocation,
and the infrastructure for implementations of the
W3C WebDriver specification
that lets you write interchangeable code for all major web browsers.
This project is made possible by volunteer contributors
who have put in thousands of hours of their own time,
and made the source code
freely available
for anyone to use, enjoy, and improve.
Selenium brings together browser vendors, engineers, and enthusiasts
to further an open discussion around automation of the web platform.
The project organises an annual conference
to teach and nurture the community.
At the core of Selenium is WebDriver,
an interface to write instruction sets that can be run interchangeably in many
browsers. Once you’ve installed everything, only a few lines of code get you inside
a browser. You can find a more comprehensive example in Writing your first Selenium script
See the Overview to check the different project
components and decide if Selenium is the right tool for you.
You should continue on to Getting Started
to understand how you can install Selenium and successfully use it as a test
automation tool, and scaling simple tests like this to run in large, distributed
environments on multiple browsers, on several different operating systems.
1 - Selenium Overview
Is Selenium for you? See an overview of the different project components.
Selenium is not just one tool or API;
it comprises many tools.
WebDriver
If you are beginning with desktop website or mobile website test automation, then you
are going to be using WebDriver APIs. WebDriver
uses browser automation APIs provided by browser vendors to control the browser and
run tests. This is as if a real user is operating the browser. Since
WebDriver does not require its API to be compiled with application
code, it is not intrusive. Hence, you are testing the
same application which you push live.
IDE
IDE (Integrated Development Environment)
is the tool you use to develop your Selenium test cases. It’s an easy-to-use Chrome
and Firefox extension and is generally the most efficient way to develop
test cases. It records the users’ actions in the browser for you, using
existing Selenium commands, with parameters defined by the context of
that element. This is not only a time-saver but also an excellent way
of learning Selenium script syntax.
Grid
Selenium Grid allows you to run test cases in different
machines across different platforms. The control of
triggering the test cases is on the local end, and
when the test cases are triggered, they are automatically
executed by the remote end.
After the development of the WebDriver tests, you may face
the need to run your tests on multiple browsers and
operating system combinations.
This is where Grid comes into the picture.
1.1 - Selenium components
Building a test suite using WebDriver will require you to understand and
effectively use several components. As with everything in
software, different people use different terms for the same idea. Below is
a breakdown of how terms are used in this description.
Terminology
API: Application Programming Interface. This is the set of “commands”
you use to manipulate WebDriver.
Library: A code module that contains the APIs and the code necessary
to implement them. Libraries are specific to each language binding, eg .jar
files for Java, .dll files for .NET, etc.
Driver: Responsible for controlling the actual browser. Most drivers
are created by the browser vendors themselves. Drivers are generally
executable modules that run on the system with the browser itself,
not the system executing the test suite. (Although those may be the
same system.) NOTE: Some people refer to the drivers as proxies.
Framework: An additional library that is used as a support for WebDriver
suites. These frameworks may be test frameworks such as JUnit or NUnit.
They may also be frameworks supporting natural language features such
as Cucumber or Robotium. Frameworks may also be written and used for
tasks such as manipulating or configuring the system under test, data
creation, test oracles, etc.
The Parts and Pieces
At its minimum, WebDriver talks to a browser through a driver. Communication
is two-way: WebDriver passes commands to the browser through the driver, and
receives information back via the same route.
The driver is specific to the browser, such as ChromeDriver for Google’s
Chrome/Chromium, GeckoDriver for Mozilla’s Firefox, etc. The driver runs on
the same system as the browser. This may or may not be the same system where
the tests themselves are executed.
This simple example above is direct communication. Communication to the
browser may also be remote communication through Selenium Server or
RemoteWebDriver. RemoteWebDriver runs on the same system as the driver
and the browser.
Remote communication can also take place using Selenium Server or Selenium
Grid, both of which in turn talk to the driver on the host system
Where Frameworks fit in
WebDriver has one job and one job only: communicate with the browser via any
of the methods above. WebDriver does not know a thing about testing: it does not
know how to compare things, assert pass or fail, and it certainly does not know
a thing about reporting or Given/When/Then grammar.
This is where various frameworks come into play. At a minimum, you will need a
test framework that matches the language bindings, e.g., NUnit for .NET, JUnit
for Java, RSpec for Ruby, etc.
The test framework is responsible for running and executing your WebDriver
and related steps in your tests. As such, you can think of it looking akin
to the following image.
Natural language frameworks/tools such as Cucumber may exist as part of that
Test Framework box in the figure above, or they may wrap the Test Framework
entirely in their custom implementation.
1.2 - A deeper look at Selenium
Selenium is an umbrella project for a range of tools and libraries that enable and support the automation of web browsers.
Selenium controls web browsers
Selenium is many things
but at its core, it is a toolset for web browser automation
that uses the best techniques available
to remotely control browser instances
and emulate a user’s interaction with the browser.
Selenium allows users to simulate common activities performed by end-users;
entering text into fields,
selecting drop-down values and checking boxes,
and clicking links in documents.
It also provides many other controls such as mouse movement,
arbitrary JavaScript execution, and much more.
Although used primarily for front-end testing of websites,
Selenium is, at its core, a browser user agent library.
The interfaces are ubiquitous to their application,
encouraging composition with other libraries to suit your purpose.
One interface to rule them all
One of the project’s guiding principles
is to support a common interface for all (major) browser technologies.
Web browsers are incredibly complex, highly engineered applications,
performing their operations in entirely different ways
but which frequently look the same while doing so.
Even though the text is rendered in the same fonts,
the images are displayed in the same place
, and the links take you to the same destination.
What is happening underneath is as different as night and day.
Selenium “abstracts” these differences,
hiding their details and intricacies from the person writing the code.
This allows you to write several lines of code to perform a complicated workflow,
but these same lines will execute on Firefox,
Internet Explorer, Chrome, and all other supported browsers.
Tools and support
Selenium’s minimalist design approach gives it the
versatility to be included as a component in bigger applications.
The surrounding infrastructure provided under the Selenium umbrella
gives you the tools to put together
your grid of browsers
so tests can be run on different browsers and multiple operating systems
across a range of machines.
Imagine a bank of computers in your server room or data center
all firing up browsers at the same time
hitting your site’s links, forms,
and tables—testing your application 24 hours a day.
Through the simple programming interface
provided for the most common languages,
these tests will run tirelessly in parallel,
reporting back to you when errors occur.
It is an aim to help make this a reality for you,
by providing users with tools and documentation to not only control browsers
but to make it easy to scale and deploy such grids.
Who uses Selenium
Many of the most important companies in the world
have adopted Selenium for their browser-based testing,
often replacing years-long efforts involving other proprietary tools.
As it has grown in popularity, so have its requirements and challenges multiplied.
As the web becomes more complicated
and new technologies are added to websites,
it’s the mission of this project to keep up with them where possible.
Being an open-source project,
this support is provided through the generous donation of time from many volunteers,
every one of which has a “day job.”
Another mission of the project is to encourage
more volunteers to partake in this effort,
and build a strong community
so that the project can continue to keep up with emerging technologies
and remain a dominant platform for functional test automation.
2 - WebDriver
WebDriver drives a browser natively, learn more about it.
WebDriver drives a browser natively, as a user would, either locally
or on a remote machine using the Selenium server,
marks a leap forward in terms of browser automation.
Selenium WebDriver refers to both the language bindings
and the implementations of the individual browser controlling code.
This is commonly referred to as just WebDriver.
WebDriver is designed as a simple
and more concise programming interface.
WebDriver is a compact object-oriented API.
It drives the browser effectively.
2.1 - Getting started
If you are new to Selenium, we have a few resources that can help you get up to speed right away.
Selenium supports automation of all the major browsers in the market
through the use of WebDriver.
WebDriver is an API and protocol that defines a language-neutral interface
for controlling the behaviour of web browsers.
Each browser is backed by a specific WebDriver implementation, called a driver.
The driver is the component responsible for delegating down to the browser,
and handles communication to and from Selenium and the browser.
This separation is part of a conscious effort to have browser vendors
take responsibility for the implementation for their browsers.
Selenium makes use of these third party drivers where possible,
but also provides its own drivers maintained by the project
for the cases when this is not a reality.
The Selenium framework ties all of these pieces together
through a user-facing interface that enables the different browser backends
to be used transparently,
enabling cross-browser and cross-platform automation.
Selenium setup is quite different from the setup of other commercial tools.
Before you can start writing Selenium code, you have to
install the language bindings libraries for your language of choice, the browser you
want to use, and the driver for that browser.
Follow the links below to get up and going with Selenium WebDriver.
If you wish to start with a low-code/record and playback tool, please check
Selenium IDE
Once you get things working, if you want to scale up your tests, check out the
Selenium Grid.
2.1.1 - Install a Selenium library
Setting up the Selenium library for your favourite programming language.
First you need to install the Selenium bindings for your automation project.
The installation process for libraries depends on the language you choose to use.
Make sure you check the Selenium downloads page to make sure
you are using the latest version.
Further items of note for using Visual Studio Code (vscode) and C#
Install the compatible .NET SDK as per the section above.
Also install the vscode extensions (Ctrl-Shift-X) for C# and NuGet.
Follow the instruction here
to create and run the “Hello World” console project using C#.
You may also create a NUnit starter project using the command line dotnet new NUnit.
Make sure the file %appdata%\NuGet\nuget.config is configured properly as some developers reported that it will be empty due to some issues.
If nuget.config is empty, or not configured properly, then .NET builds will fail for Selenium Projects.
Add the following section to the file nuget.config if it is empty:
For more info about nuget.configclick here.
You may have to customize nuget.config to meet you needs.
Now, go back to vscode, press Ctrl-Shift-P, and type “NuGet Add Package”, and enter the required Selenium packages such as Selenium.WebDriver.
Press Enter and select the version.
Now you can use the examples in the documentation related to C# with vscode.
You can see the minimum required version of Ruby for any given Selenium version
on rubygems.org
Everything Selenium does is send the browser commands to do something or send requests for information.
Most of what you’ll do with Selenium is a combination of these basic commands
Click on the link to “View full example on GitHub” to see the code in context.
1. Start the session
For more details on starting a session read our documentation on driver sessions
Synchronizing the code with the current state of the browser is one of the biggest challenges
with Selenium, and doing it well is an advanced topic.
Essentially you want to make sure that the element is on the page before you attempt to locate it
and the element is in an interactable state before you attempt to interact with it.
An implicit wait is rarely the best solution, but it’s the easiest to demonstrate here, so
we’ll use it as a placeholder.
This ends the driver process, which by default closes the browser as well.
No more commands can be sent to this driver instance.
See Quitting Sessions.
Most Selenium users execute many sessions and need to organize them to minimize duplication and keep the code
more maintainable. Read on to learn about how to put this code into context for your use case with
Using Selenium.
2.1.3 - Organizing and Executing Selenium Code
Scaling Selenium execution with an IDE and a Test Runner library
Content Help
Note:
This section needs additional and/or updated content
This page is very incomplete and has placeholders for things that need to be added or expounded on.
If you want to run more than a handful of one-off scripts, you need to
be able to organize and work with your code. This page should give you
ideas for how to actually do productive things with your Selenium code.
Common Uses
Most people use Selenium to execute automated tests for web applications,
but Selenium supports any use case of browser automation.
Repetitive Tasks
Perhaps you need to log into a website and download something, or submit a form.
You can create a Selenium script to run with a service at preset times.
Web Scraping
Are you looking to collect data from a site that doesn’t have an API? Selenium
will let you do this, but please make sure you are familiar with the website’s
terms of service as some websites do not permit it and others will even block Selenium.
Testing
Running Selenium for testing requires making assertions on actions taken by Selenium.
So a good assertion library is required. Additional features to provide structure for tests
require use of Test Runner.
IDEs
Regardless of how you use Selenium code,
you won’t be very effective writing or executing it without a good
Integrated Developer Environment. Here are some common options…
Even if you aren’t using Selenium for testing, if you have advanced use cases, it might make
sense to use a test runner to better organize your code. Being able to use before/after hooks
and run things in groups or in parallel can be very useful.
Choosing
There are many different test runners available.
All the code examples in this documentation can be found in (or is being moved to) our
example directories that use test runners and get executed every release to ensure all the code is correct and updated.
Here is a list of test runners with links. The first item is the one that is used by this repository and the one
that will be used for all examples on this page.
JUnit - A widely-used testing framework for Java-based Selenium tests.
TestNG - Offers extra features like parallel test execution and parameterized tests.
pytest - A preferred choice for many, thanks to its simplicity and powerful plugins.
unittest - Python’s standard library testing framework.
NUnit - A popular unit-testing framework for .NET.
RSpec - The most widely used testing library for running Selenium tests in Ruby.
Minitest - A lightweight testing framework that comes with Ruby standard library.
Jest - Primarily known as a testing framework for React, it can also be used for Selenium tests.
Mocha - The most common JS library for running Selenium tests.
Installing
This is very similar to what was required in Install a Selenium Library.
This code is only showing examples for what is being used in our Documentation Examples project.
Maven
Gradle
To use it in a project, add it to the requirements.txt file:
in the project’s csproj file, specify the dependency as a PackageReference in ItemGroup:
Add to project’s gemfile
In your project’s package.json, add requirement to dependencies:
The primary unique argument for starting a remote driver includes information about where to execute the code.
Read the details in the Remote Driver Section
In Selenium 3, capabilities were defined in a session by using Desired Capabilities classes.
As of Selenium 4, you must use the browser options classes.
For remote driver sessions, a browser options instance is required as it determines which browser will be used.
These options are described in the w3c specification for Capabilities.
Each browser has custom options that may be defined in addition to the ones defined in the specification.
browserName
Browser name is set by default when using an Options class instance.
This capability is optional, this is used to set the available browser version at remote end.
In recent versions of Selenium, if the version is not found on the system,
it will be automatically downloaded by Selenium Manager
Three types of page load strategies are available.
The page load strategy queries the
document.readyState
as described in the table below:
Strategy
Ready State
Notes
normal
complete
Used by default, waits for all resources to download
eager
interactive
DOM access is ready, but other resources like images may still be loading
none
Any
Does not block WebDriver at all
The document.readyState property of a document describes the loading state of the current document.
When navigating to a new page via URL, by default, WebDriver will hold off on completing a navigation
method (e.g., driver.navigate().get()) until the document ready state is complete. This does not
necessarily mean that the page has finished loading, especially for sites like Single Page Applications
that use JavaScript to dynamically load content after the Ready State returns complete. Note also
that this behavior does not apply to navigation that is a result of clicking an element or submitting a form.
If a page takes a long time to load as a result of downloading assets (e.g., images, css, js)
that aren’t important to the automation, you can change from the default parameter of normal to
eager or none to speed up the session. This value applies to the entire session, so make sure
that your waiting strategy is sufficient to minimize
flakiness.
normal (default)
WebDriver waits until the load
event fire is returned.
importorg.openqa.selenium.PageLoadStrategy;importorg.openqa.selenium.WebDriver;importorg.openqa.selenium.chrome.ChromeOptions;importorg.openqa.selenium.chrome.ChromeDriver;publicclasspageLoadStrategy{publicstaticvoidmain(String[]args){ChromeOptionschromeOptions=newChromeOptions();chromeOptions.setPageLoadStrategy(PageLoadStrategy.NORMAL);WebDriverdriver=newChromeDriver(chromeOptions);try{// Navigate to Url
driver.get("https://google.com");}finally{driver.quit();}}}
it('Navigate using normal page loading strategy',asyncfunction(){letdriver=awaitenv.builder().setChromeOptions(options.setPageLoadStrategy('normal')).build();awaitdriver.get('https://www.selenium.dev/selenium/web/blank.html');
importorg.openqa.selenium.PageLoadStrategy;importorg.openqa.selenium.WebDriver;importorg.openqa.selenium.chrome.ChromeOptions;importorg.openqa.selenium.chrome.ChromeDriver;publicclasspageLoadStrategy{publicstaticvoidmain(String[]args){ChromeOptionschromeOptions=newChromeOptions();chromeOptions.setPageLoadStrategy(PageLoadStrategy.EAGER);WebDriverdriver=newChromeDriver(chromeOptions);try{// Navigate to Url
driver.get("https://google.com");}finally{driver.quit();}}}
importorg.openqa.selenium.PageLoadStrategy;importorg.openqa.selenium.WebDriver;importorg.openqa.selenium.chrome.ChromeOptions;importorg.openqa.selenium.chrome.ChromeDriver;publicclasspageLoadStrategy{publicstaticvoidmain(String[]args){ChromeOptionschromeOptions=newChromeOptions();chromeOptions.setPageLoadStrategy(PageLoadStrategy.NONE);WebDriverdriver=newChromeDriver(chromeOptions);try{// Navigate to Url
driver.get("https://google.com");}finally{driver.quit();}}}
This capability checks whether an expired (or)
invalid TLS Certificate is used while navigating
during a session.
If the capability is set to false, an
insecure certificate error
will be returned as navigation encounters any domain
certificate problems. If set to true, invalid certificate will be
trusted by the browser.
All self-signed certificates will be trusted by this capability by default.
Once set, acceptInsecureCerts capability will have an
effect for the entire session.
A WebDriver session is imposed with a certain session timeout
interval, during which the user can control the behaviour
of executing scripts or retrieving information from the browser.
Each session timeout is configured with
combination of different timeouts as described below:
Script Timeout
Specifies when to interrupt an executing script in
a current browsing context. The default timeout 30,000
is imposed when a new session is created by WebDriver.
Specifies the time interval in which web page
needs to be loaded in a current browsing context.
The default timeout 300,000 is imposed when a
new session is created by WebDriver. If page load limits
a given/default time frame, the script will be stopped by
TimeoutException.
This specifies the time to wait for the
implicit element location strategy when
locating elements. The default timeout 0
is imposed when a new session is created by WebDriver.
Specifies the state of current session’s user prompt handler.
Defaults to dismiss and notify state
User Prompt Handler
This defines what action must take when a
user prompt encounters at the remote-end. This is defined by
unhandledPromptBehavior capability and has the following states:
This new capability indicates if strict interactability checks
should be applied to input type=file elements. As strict interactability
checks are off by default, there is a change in behaviour
when using Element Send Keys with hidden file upload controls.
A proxy server acts as an intermediary for
requests between a client and a server. In simple terms,
the traffic flows through the proxy server
on its way to the address you requested and back.
A proxy server for automation scripts
with Selenium could be helpful for:
Capture network traffic
Mock backend calls made by the website
Access the required website under complex network
topologies or strict corporate restrictions/policies.
If you are in a corporate environment, and a
browser fails to connect to a URL, this is most
likely because the environment needs a proxy to be accessed.
Selenium WebDriver provides a way to proxy settings:
The Service classes are for managing the starting and stopping of local drivers.
They cannot be used with a Remote WebDriver session.
Service classes allow you to specify information about the driver,
like location and which port to use.
They also let you specify what arguments get passed
to the command line. Most of the useful arguments are related to logging.
Default Service instance
To start a driver with a default service instance:
Note: If you are using Selenium 4.6 or greater, you shouldn’t need to set a driver location.
If you cannot update Selenium or have an advanced use case, here is how to specify the driver location:
Logging functionality varies between browsers. Most browsers allow you to
specify location and level of logs. Take a look at the respective browser page:
Selenium lets you automate browsers on remote computers if
there is a Selenium Grid running on them. The computer that
executes the code is referred to as the client computer, and the computer with the browser and driver is
referred to as the remote computer or sometimes as an end-node.
To direct Selenium tests to the remote computer, you need to use a Remote WebDriver class
and pass the URL including the port of the grid on that machine. Please see the grid documentation
for all the various ways the grid can be configured.
Basic Example
The driver needs to know where to send commands to and which browser to start on the Remote computer. So an address
and an options instance are both required.
Uploading a file is more complicated for Remote WebDriver sessions because the file you want to
upload is likely on the computer executing the code, but the driver on the
remote computer is looking for the provided path on its local file system.
The solution is to use a Local File Detector. When one is set, Selenium will bundle
the file, and send it to the remote machine, so the driver can see the reference to it.
Some bindings include a basic local file detector by default, and all of them allow
for a custom file detector.
Java does not include a Local File Detector by default, so you must always add one to do uploads.
Chrome, Edge and Firefox each allow you to set the location of the download directory.
When you do this on a remote computer, though, the location is on the remote computer’s local file system.
Selenium allows you to enable downloads to get these files onto the client computer.
Enable Downloads in the Grid
Regardless of the client, when starting the grid in node or standalone mode,
you must add the flag:
--enable-managed-downloads true
Enable Downloads in the Client
The grid uses the se:downloadsEnabled capability to toggle whether to be responsible for managing the browser location.
Each of the bindings have a method in the options class to set this.
Be aware that Selenium is not waiting for files to finish downloading,
so the list is an immediate snapshot of what file names are currently in the directory for the given session.
Each browser has implemented special functionality that is available only to that browser.
Each of the Selenium bindings has implemented a different way to use those features in a Remote Session
Java requires you to use the Augmenter class, which allows it to automatically pull in implementations for
all interfaces that match the capabilities used with the RemoteWebDriver
This feature is only available for Java client binding (Beta onwards). The Remote WebDriver client sends requests to the Selenium Grid server, which passes them to the WebDriver. Tracing should be enabled at the server and client-side to trace the HTTP requests end-to-end. Both ends should have a trace exporter setup pointing to the visualization framework.
By default, tracing is enabled for both client and server.
To set up the visualization framework Jaeger UI and Selenium Grid 4, please refer to Tracing Setup for the desired version.
For client-side setup, follow the steps below.
Add the required dependencies
Installation of external libraries for tracing exporter can be done using Maven.
Add the opentelemetry-exporter-jaeger and grpc-netty dependency in your project pom.xml:
Each browser has custom capabilities and unique features.
2.3.1 - Chrome specific functionality
These are capabilities and features specific to Google Chrome browsers.
By default, Selenium 4 is compatible with Chrome v75 and greater. Note that the version of
the Chrome browser and the version of chromedriver must match the major version.
Options
Capabilities common to all browsers are described on the Options page.
The args parameter is for a list of command line switches to be used when starting the browser.
There are two excellent resources for investigating these arguments:
The binary parameter takes the path of an alternate location of browser to use. With this parameter you can
use chromedriver to drive various Chromium based browsers.
Chromedriver has several default arguments it uses to start the browser.
If you do not want those arguments added, pass them into excludeSwitches.
A common example is to turn the popup blocker back on. A full list of default arguments
can be parsed from the
Chromium Source Code
Examples for creating a default Service object, and for setting driver location and port
can be found on the Driver Service page.
Log output
Getting driver logs can be helpful for debugging issues. The Service class lets you
direct where the logs will go. Logging output is ignored unless the user directs it somewhere.
File output
To change the logging output to save to a specific file:
Note: Java also allows setting console output by System Property; Property key: ChromeDriverService.CHROME_DRIVER_LOG_PROPERTY Property value: DriverService.LOG_STDOUT or DriverService.LOG_STDERR
There are 6 available log levels: ALL, DEBUG, INFO, WARNING, SEVERE, and OFF.
Note that --verbose is equivalent to --log-level=ALL and --silent is equivalent to --log-level=OFF,
so this example is just setting the log level generically:
Note: Java also allows setting log level by System Property: Property key: ChromeDriverService.CHROME_DRIVER_LOG_LEVEL_PROPERTY Property value: String representation of ChromiumDriverLogLevel enum
There are 2 features that are only available when logging to a file:
append log
readable timestamps
To use them, you need to also explicitly specify the log path and log level.
The log output will be managed by the driver, not the process, so minor differences may be seen.
Note: Java also allows toggling these features by System Property: Property keys: ChromeDriverService.CHROME_DRIVER_APPEND_LOG_PROPERTY and ChromeDriverService.CHROME_DRIVER_READABLE_TIMESTAMP Property value: "true" or "false"
Chromedriver and Chrome browser versions should match, and if they don’t the driver will error.
If you disable the build check, you can force the driver to be used with any version of Chrome.
Note that this is an unsupported feature, and bugs will not be investigated.
Note: Java also allows disabling build checks by System Property: Property key: ChromeDriverService.CHROME_DRIVER_DISABLE_BUILD_CHECK Property value: "true" or "false"
See the Chrome DevTools section for more information about using Chrome DevTools
2.3.2 - Edge specific functionality
These are capabilities and features specific to Microsoft Edge browsers.
Microsoft Edge is implemented with Chromium, with the earliest supported version of v79. Similar to Chrome,
the major version number of edgedriver must match the major version of the Edge browser.
Options
Capabilities common to all browsers are described on the Options page.
The args parameter is for a list of command line switches to be used when starting the browser.
There are two excellent resources for investigating these arguments:
The binary parameter takes the path of an alternate location of browser to use. With this parameter you can
use chromedriver to drive various Chromium based browsers.
MSEdgedriver has several default arguments it uses to start the browser.
If you do not want those arguments added, pass them into excludeSwitches.
A common example is to turn the popup blocker back on. A full list of default arguments
can be parsed from the
Chromium Source Code
Examples for creating a default Service object, and for setting driver location and port
can be found on the Driver Service page.
Log output
Getting driver logs can be helpful for debugging issues. The Service class lets you
direct where the logs will go. Logging output is ignored unless the user directs it somewhere.
File output
To change the logging output to save to a specific file:
Note: Java also allows setting console output by System Property; Property key: EdgeDriverService.EDGE_DRIVER_LOG_PROPERTY Property value: DriverService.LOG_STDOUT or DriverService.LOG_STDERR
There are 6 available log levels: ALL, DEBUG, INFO, WARNING, SEVERE, and OFF.
Note that --verbose is equivalent to --log-level=ALL and --silent is equivalent to --log-level=OFF,
so this example is just setting the log level generically:
Note: Java also allows setting log level by System Property: Property key: EdgeDriverService.EDGE_DRIVER_LOG_LEVEL_PROPERTY Property value: String representation of ChromiumDriverLogLevel enum
There are 2 features that are only available when logging to a file:
append log
readable timestamps
To use them, you need to also explicitly specify the log path and log level.
The log output will be managed by the driver, not the process, so minor differences may be seen.
Note: Java also allows toggling these features by System Property: Property keys: EdgeDriverService.EDGE_DRIVER_APPEND_LOG_PROPERTY and EdgeDriverService.EDGE_DRIVER_READABLE_TIMESTAMP Property value: "true" or "false"
Edge browser and msedgedriver versions should match, and if they don’t the driver will error.
If you disable the build check, you can force the driver to be used with any version of Edge.
Note that this is an unsupported feature, and bugs will not be investigated.
Note: Java also allows disabling build checks by System Property: Property key: EdgeDriverService.EDGE_DRIVER_DISABLE_BUILD_CHECK Property value: "true" or "false"
Microsoft Edge can be driven in “Internet Explorer Compatibility Mode”, which uses
the Internet Explorer Driver classes in conjunction with Microsoft Edge.
Read the Internet Explorer page for more details.
Special Features
Some browsers have implemented additional features that are unique to them.
Casting
You can drive Chrome Cast devices with Edge, including sharing tabs
The args parameter is for a list of Command line switches used when starting the browser. Commonly used args include -headless and "-profile", "/path/to/profile"
The binary parameter takes the path of an alternate location of browser to use. For example, with this parameter you can
use geckodriver to drive Firefox Nightly instead of the production version when both are present on your computer.
const{Builder}=require("selenium-webdriver");constfirefox=require('selenium-webdriver/firefox');constoptions=newfirefox.Options();letprofile='/path to custom profile';options.setProfile(profile);constdriver=newBuilder().forBrowser('firefox').setFirefoxOptions(options).build();
Service settings common to all browsers are described on the Service page.
Log output
Getting driver logs can be helpful for debugging various issues. The Service class lets you
direct where the logs will go. Logging output is ignored unless the user directs it somewhere.
File output
To change the logging output to save to a specific file:
Note: Java also allows setting console output by System Property; Property key: GeckoDriverService.GECKO_DRIVER_LOG_PROPERTY Property value: DriverService.LOG_STDOUT or DriverService.LOG_STDERR
Note: Java also allows setting log level by System Property: Property key: GeckoDriverService.GECKO_DRIVER_LOG_LEVEL_PROPERTY Property value: String representation of FirefoxDriverLogLevel enum
The driver logs everything that gets sent to it, including string representations of large binaries, so
Firefox truncates lines by default. To turn off truncation:
Note: Java also allows setting log level by System Property: Property key: GeckoDriverService.GECKO_DRIVER_LOG_NO_TRUNCATE Property value: "true" or "false"
The default directory for profiles is the system temporary directory. If you do not have access to that directory,
or want profiles to be created some place specific, you can change the profile root directory:
When working with an unfinished or unpublished extension, it will likely not be signed. As such, it can only
be installed as “temporary.” This can be done by passing in either a zip file or a directory, here’s an
example with a directory:
These are capabilities and features specific to Microsoft Internet Explorer browsers.
As of June 2022, Selenium officially no longer supports standalone Internet Explorer.
The Internet Explorer driver still supports running Microsoft Edge in “IE Compatibility Mode.”
Special considerations
The IE Driver is the only driver maintained by the Selenium Project directly.
While binaries for both the 32-bit and 64-bit
versions of Internet Explorer are available, there are some
known limitations
with the 64-bit driver. As such it is recommended to use the 32-bit driver.
Additional information about using Internet Explorer can be found on the
IE Driver Server page
Options
Starting a Microsoft Edge browser in Internet Explorer Compatibility mode with basic defined options looks like this:
If IE is not present on the system (default in Windows 11), you do not need to
use the two parameters above. IE Driver will use Edge and will automatically locate it.
If IE and Edge are both present on the system, you only need to set attaching to Edge,
IE Driver will automatically locate Edge on your system.
Here are a few common use cases with different capabilities:
fileUploadDialogTimeout
In some environments, Internet Explorer may timeout when opening the
File Upload dialog. IEDriver has a default timeout of 1000ms, but you
can increase the timeout using the fileUploadDialogTimeout capability.
When set to true, this capability clears the Cache,
Browser History and Cookies for all running instances
of InternetExplorer including those started manually
or by the driver. By default, it is set to false.
Using this capability will cause performance drop while
launching the browser, as the driver will wait until the cache
gets cleared before launching the IE browser.
This capability accepts a Boolean value as parameter.
InternetExplorer driver expects the browser zoom level to be 100%,
else the driver will throw an exception. This default behaviour
can be disabled by setting the ignoreZoomSetting to true.
This capability accepts a Boolean value as parameter.
Whether to skip the Protected Mode check while launching
a new IE session.
If not set and Protected Mode settings are not same for
all zones, an exception will be thrown by the driver.
If capability is set to true, tests may
become flaky, unresponsive, or browsers may hang.
However, this is still by far a second-best choice,
and the first choice should always be to actually
set the Protected Mode settings of each zone manually.
If a user is using this property,
only a “best effort” at support will be given.
This capability accepts a Boolean value as parameter.
<p><ahref=/documentation/about/contributing/#creating-examples><spanclass="selenium-badge-code"data-bs-toggle="tooltip"data-bs-placement="right"title="This code example is missing. Examples are added to the examples directory; click for details in the contribution guide">AddExample</span></a></p>
Internet Explorer includes several command-line options
that enable you to troubleshoot and configure the browser.
The following describes few supported command-line options
-private : Used to start IE in private browsing mode. This works for IE 8 and later versions.
-k : Starts Internet Explorer in kiosk mode.
The browser opens in a maximized window that does not display the address bar, the navigation buttons, or the status bar.
-extoff : Starts IE in no add-on mode.
This option specifically used to troubleshoot problems with browser add-ons. Works in IE 7 and later versions.
Note: forceCreateProcessApi should to enabled in-order for command line arguments to work.
Service settings common to all browsers are described on the Service page.
Log output
Getting driver logs can be helpful for debugging various issues. The Service class lets you
direct where the logs will go. Logging output is ignored unless the user directs it somewhere.
File output
To change the logging output to save to a specific file:
Note: Java also allows setting console output by System Property; Property key: InternetExplorerDriverService.IE_DRIVER_LOGFILE_PROPERTY Property value: DriverService.LOG_STDOUT or DriverService.LOG_STDERR
Note: Java also allows setting log level by System Property: Property key: InternetExplorerDriverService.IE_DRIVER_LOGLEVEL_PROPERTY Property value: String representation of InternetExplorerDriverLogLevel.DEBUG.toString() enum
These are capabilities and features specific to Apple Safari browsers.
Unlike Chromium and Firefox drivers, the safaridriver is installed with the Operating System.
To enable automation on Safari, run the following command from the terminal:
safaridriver --enable
Options
Capabilities common to all browsers are described on the Options page.
Those looking to automate Safari on iOS should look to the Appium project.
Service
Service settings common to all browsers are described on the Service page.
Logging
Unlike other browsers, Safari doesn’t let you choose where logs are output, or change levels. The one option
available is to turn logs off or on. If logs are toggled on, they can be found at:~/Library/Logs/com.apple.WebDriver/.
Note: Java also allows setting console output by System Property; Property key: SafariDriverService.SAFARI_DRIVER_LOGGING Property value: "true" or "false"
Perhaps the most common challenge for browser automation is ensuring
that the web application is in a state to execute a particular
Selenium command as desired. The processes often end up in
a race condition where sometimes the browser gets into the right
state first (things work as intended) and sometimes the Selenium code
executes first (things do not work as intended). This is one of the
primary causes of flaky tests.
All navigation commands wait for a specific readyState value
based on the page load strategy (the
default value to wait for is "complete") before the driver returns control to the code.
The readyState only concerns itself with loading assets defined in the HTML,
but loaded JavaScript assets often result in changes to the site,
and elements that need to be interacted with may not yet be on the page
when the code is ready to execute the next Selenium command.
Similarly, in a lot of single page applications, elements get dynamically
added to a page or change visibility based on a click.
An element must be both present and
displayed on the page
in order for Selenium to interact with it.
Take this page for example: https://www.selenium.dev/selenium/web/dynamic.html
When the “Add a box!” button is clicked, a “div” element that does not exist is created.
When the “Reveal a new input” button is clicked, a hidden text field element is displayed.
In both cases the transition takes a couple seconds.
If the Selenium code is to click one of these buttons and interact with the resulting element,
it will do so before that element is ready and fail.
The first solution many people turn to is adding a sleep statement to
pause the code execution for a set period of time.
Because the code can’t know exactly how long it needs to wait, this
can fail when it doesn’t sleep long enough. Alternately, if the value is set too high
and a sleep statement is added in every place it is needed, the duration of
the session can become prohibitive.
Selenium provides two different mechanisms for synchronization that are better.
Implicit waits
Selenium has a built-in way to automatically wait for elements called an implicit wait.
An implicit wait value can be set either with the timeouts
capability in the browser options, or with a driver method (as shown below).
This is a global setting that applies to every element location call for the entire session.
The default value is 0, which means that if the element is not found, it will
immediately return an error. If an implicit wait is set, the driver will wait for the
duration of the provided value before returning the error. Note that as soon as the
element is located, the driver will return the element reference and the code will continue executing,
so a larger implicit wait value won’t necessarily increase the duration of the session.
Warning:
Do not mix implicit and explicit waits.
Doing so can cause unpredictable wait times.
For example, setting an implicit wait of 10 seconds
and an explicit wait of 15 seconds
could cause a timeout to occur after 20 seconds.
Solving our example with an implicit wait looks like this:
Explicit waits are loops added to the code that poll the application
for a specific condition to evaluate as true before it exits the loop and
continues to the next command in the code. If the condition is not met before a designated timeout value,
the code will give a timeout error. Since there are many ways for the application not to be in the desired state,
so explicit waits are a great choice to specify the exact condition to wait for
in each place it is needed.
Another nice feature is that, by default, the Selenium Wait class automatically waits for the designated element to exist.
This example shows the condition being waited for as a lambda. Java also supports
Expected Conditions
The Wait class can be instantiated with various parameters that will change how the conditions are evaluated.
This can include:
Changing how often the code is evaluated (polling interval)
Specifying which exceptions should be handled automatically
Changing the total timeout length
Customizing the timeout message
For instance, if the element not interactable error is retried by default, then we can
add an action on a method inside the code getting executed (we just need to
make sure that the code returns true when it is successful):
The easiest way to customize Waits in Java is to use the FluentWait class:
Identifying and working with element objects in the DOM.
The majority of most people’s Selenium code involves working with web elements.
2.5.1 - File Upload
Because Selenium cannot interact with the file upload dialog, it provides a way
to upload files without opening the dialog. If the element is an input element with type file,
you can use the send keys method to send the full path to the file that will be uploaded.
```java
import org.openqa.selenium.By
import org.openqa.selenium.chrome.ChromeDriver
fun main() {
val driver = ChromeDriver()
driver.get("https://the-internet.herokuapp.com/upload")
driver.findElement(By.id("file-upload")).sendKeys("selenium-snapshot.jpg")
driver.findElement(By.id("file-submit")).submit()
if(driver.pageSource.contains("File Uploaded!")) {
println("file uploaded")
}
else{
println("file not uploaded")
}
}
```
2.5.2 - Locator strategies
Ways to identify one or more specific elements in the DOM.
A locator is a way to identify elements on a page. It is the argument passed to the
Finding element methods.
Check out our encouraged test practices for tips on
locators, including which to use when and
why to declare locators separately from the finding methods.
Traditional Locators
Selenium provides support for these 8 traditional location strategies in WebDriver:
Locator
Description
class name
Locates elements whose class name contains the search value (compound class names are not permitted)
css selector
Locates elements matching a CSS selector
id
Locates elements whose ID attribute matches the search value
name
Locates elements whose NAME attribute matches the search value
link text
Locates anchor elements whose visible text matches the search value
partial link text
Locates anchor elements whose visible text contains the search value. If multiple elements are matching, only the first one will be selected.
tag name
Locates elements whose tag name matches the search value
xpath
Locates elements matching an XPath expression
Creating Locators
To work on a web element using Selenium, we need to first locate it on the web page.
Selenium provides us above mentioned ways, using which we can locate element on the
page. To understand and create locator we will use the following HTML snippet.
<html><body><style>.information{background-color:white;color:black;padding:10px;}</style><h2>Contact Selenium</h2><formaction="/action_page.php"><inputtype="radio"name="gender"value="m"/>Male <inputtype="radio"name="gender"value="f"/>Female <br><br><labelfor="fname">First name:</label><br><inputclass="information"type="text"id="fname"name="fname"value="Jane"><br><br><labelfor="lname">Last name:</label><br><inputclass="information"type="text"id="lname"name="lname"value="Doe"><br><br><labelfor="newsletter">Newsletter:</label><inputtype="checkbox"name="newsletter"value="1"/><br><br><inputtype="submit"value="Submit"></form><p>To know more about Selenium, visit the official page
<ahref ="www.selenium.dev">Selenium Official Page</a></p></body></html>
class name
The HTML page web element can have attribute class. We can see an example in the
above shown HTML snippet. We can identify these elements using the class name locator
available in Selenium.
CSS is the language used to style HTML pages. We can use css selector locator strategy
to identify the element on the page. If the element has an id, we create the locator
as css = #id. Otherwise the format we follow is css =[attribute=value] .
Let us see an example from above HTML snippet. We will create locator for First Name
textbox, using css.
We can use the ID attribute of an element in a web page to locate it.
Generally the ID property should be unique for each element on the web page.
We will identify the Last Name field using it.
We can use the NAME attribute of an element in a web page to locate it.
Generally the NAME property should be unique for each element on the web page.
We will identify the Newsletter checkbox using it.
If the element we want to locate is a link, we can use the link text locator
to identify it on the web page. The link text is the text displayed of the link.
In the HTML snippet shared, we have a link available, let’s see how will we locate it.
WebDriverdriver=newChromeDriver();driver.findElement(By.linkText("Selenium Official Page"));
driver=webdriver.Chrome()driver.find_element(By.LINK_TEXT,"Selenium Official Page")
vardriver=newChromeDriver();driver.FindElement(By.LinkText("Selenium Official Page"));
driver=Selenium::WebDriver.for:chromedriver.find_element(link_text:'Selenium Official Page')
letdriver=awaitnewBuilder().forBrowser('chrome').build();constloc=awaitdriver.findElement(By.linkText('Selenium Official Page'));
valdriver=ChromeDriver()valloc:WebElement=driver.findElement(By.linkText("Selenium Official Page"))
partial link text
If the element we want to locate is a link, we can use the partial link text locator
to identify it on the web page. The link text is the text displayed of the link.
We can pass partial text as value.
In the HTML snippet shared, we have a link available, lets see how will we locate it.
We can use the HTML TAG itself as a locator to identify the web element on the page.
From the above HTML snippet shared, lets identify the link, using its html tag “a”.
A HTML document can be considered as a XML document, and then we can use xpath
which will be the path traversed to reach the element of interest to locate the element.
The XPath could be absolute xpath, which is created from the root of the document.
Example - /html/form/input[1]. This will return the male radio button.
Or the xpath could be relative. Example- //input[@name=‘fname’]. This will return the
first name text box. Let us create locator for female radio button using xpath.
Selenium 4 introduces Relative Locators (previously
called Friendly Locators). These locators are helpful when it is not easy to construct a locator for
the desired element, but easy to describe spatially where the element is in relation to an element that does have
an easily constructed locator.
How it works
Selenium uses the JavaScript function
getBoundingClientRect()
to determine the size and position of elements on the page, and can use this information to locate neighboring elements.
Relative locator methods can take as the argument for the point of origin, either a previously located element reference,
or another locator. In these examples we’ll be using locators only, but you could swap the locator in the final method with
an element object and it will work the same.
Let us consider the below example for understanding the relative locators.
Available relative locators
Above
If the email text field element is not easily identifiable for some reason, but the password text field element is,
we can locate the text field element using the fact that it is an “input” element “above” the password element.
If the password text field element is not easily identifiable for some reason, but the email text field element is,
we can locate the text field element using the fact that it is an “input” element “below” the email element.
If the cancel button is not easily identifiable for some reason, but the submit button element is,
we can locate the cancel button element using the fact that it is a “button” element to the “left of” the submit element.
If the submit button is not easily identifiable for some reason, but the cancel button element is,
we can locate the submit button element using the fact that it is a “button” element “to the right of” the cancel element.
If the relative positioning is not obvious, or it varies based on window size, you can use the near method to
identify an element that is at most 50px away from the provided locator.
One great use case for this is to work with a form element that doesn’t have an easily constructed locator,
but its associated input label element does.
You can also chain locators if needed. Sometimes the element is most easily identified as being both above/below one element and right/left of another.
Locating the elements based on the provided locator values.
One of the most fundamental aspects of using Selenium is obtaining element references to work with.
Selenium offers a number of built-in locator strategies to uniquely identify an element.
There are many ways to use the locators in very advanced scenarios. For the purposes of this documentation,
let’s consider this HTML snippet:
<olid="vegetables"><liclass="potatoes">…
<liclass="onions">…
<liclass="tomatoes"><span>Tomato is a Vegetable</span>…
</ol><ulid="fruits"><liclass="bananas">…
<liclass="apples">…
<liclass="tomatoes"><span>Tomato is a Fruit</span>…
</ul>
First matching element
Many locators will match multiple elements on the page. The singular find element method will return a reference to the
first element found within a given context.
Evaluating entire DOM
When the find element method is called on the driver instance, it
returns a reference to the first element in the DOM that matches with the provided locator.
This value can be stored and used for future element actions. In our example HTML above, there are
two elements that have a class name of “tomatoes” so this method will return the element in the “vegetables” list.
Rather than finding a unique locator in the entire DOM, it is often useful to narrow the search to the scope
of another located element. In the above example there are two elements with a class name of “tomatoes” and
it is a little more challenging to get the reference for the second one.
One solution is to locate an element with a unique attribute that is an ancestor of the desired element and not an
ancestor of the undesired element, then call find element on that object:
Java and C# WebDriver, WebElement and ShadowRoot classes all implement a SearchContext interface, which is
considered a role-based interface. Role-based interfaces allow you to determine whether a particular
driver implementation supports a given feature. These interfaces are clearly defined and try
to adhere to having only a single role of responsibility.
Optimized locator
A nested lookup might not be the most effective location strategy since it requires two
separate commands to be issued to the browser.
There are several use cases for needing to get references to all elements that match a locator, rather
than just the first one. The plural find elements methods return a collection of element references.
If there are no matches, an empty list is returned. In this case,
references to all fruits and vegetable list items will be returned in a collection.
Often you get a collection of elements but want to work with a specific element, which means you
need to iterate over the collection and identify the one you want.
fromseleniumimportwebdriverfromselenium.webdriver.common.byimportBydriver=webdriver.Firefox()# Navigate to Urldriver.get("https://www.example.com")# Get all the elements available with tag name 'p'elements=driver.find_elements(By.TAG_NAME,'p')foreinelements:print(e.text)
usingOpenQA.Selenium;usingOpenQA.Selenium.Firefox;usingSystem.Collections.Generic;namespaceFindElementsExample{classFindElementsExample{publicstaticvoidMain(string[]args){IWebDriverdriver=newFirefoxDriver();try{// Navigate to Urldriver.Navigate().GoToUrl("https://example.com");// Get all the elements available with tag name 'p'IList<IWebElement>elements=driver.FindElements(By.TagName("p"));foreach(IWebElementeinelements){System.Console.WriteLine(e.Text);}}finally{driver.Quit();}}}}
require'selenium-webdriver'driver=Selenium::WebDriver.for:firefoxbegin# Navigate to URLdriver.get'https://www.example.com'# Get all the elements available with tag name 'p'elements=driver.find_elements(:tag_name,'p')elements.each{|e|putse.text}ensuredriver.quitend
const{Builder,By}=require('selenium-webdriver');(asyncfunctionexample(){letdriver=awaitnewBuilder().forBrowser('firefox').build();try{// Navigate to Url
awaitdriver.get('https://www.example.com');// Get all the elements available with tag 'p'
letelements=awaitdriver.findElements(By.css('p'));for(leteofelements){console.log(awaite.getText());}}finally{awaitdriver.quit();}})();
importorg.openqa.selenium.Byimportorg.openqa.selenium.firefox.FirefoxDriverfunmain(){valdriver=FirefoxDriver()try{driver.get("https://example.com")// Get all the elements available with tag name 'p'
valelements=driver.findElements(By.tagName("p"))for(elementinelements){println("Paragraph text:"+element.text)}}finally{driver.quit()}}
Find Elements From Element
It is used to find the list of matching child WebElements within the context of parent element.
To achieve this, the parent WebElement is chained with ‘findElements’ to access child elements
importorg.openqa.selenium.By;importorg.openqa.selenium.WebDriver;importorg.openqa.selenium.WebElement;importorg.openqa.selenium.chrome.ChromeDriver;importjava.util.List;publicclassfindElementsFromElement{publicstaticvoidmain(String[]args){WebDriverdriver=newChromeDriver();try{driver.get("https://example.com");// Get element with tag name 'div'
WebElementelement=driver.findElement(By.tagName("div"));// Get all the elements available with tag name 'p'
List<WebElement>elements=element.findElements(By.tagName("p"));for(WebElemente:elements){System.out.println(e.getText());}}finally{driver.quit();}}}
fromseleniumimportwebdriverfromselenium.webdriver.common.byimportBydriver=webdriver.Chrome()driver.get("https://www.example.com")# Get element with tag name 'div'element=driver.find_element(By.TAG_NAME,'div')# Get all the elements available with tag name 'p'elements=element.find_elements(By.TAG_NAME,'p')foreinelements:print(e.text)
usingOpenQA.Selenium;usingOpenQA.Selenium.Chrome;usingSystem.Collections.Generic;namespaceFindElementsFromElement{classFindElementsFromElement{publicstaticvoidMain(string[]args){IWebDriverdriver=newChromeDriver();try{driver.Navigate().GoToUrl("https://example.com");// Get element with tag name 'div'IWebElementelement=driver.FindElement(By.TagName("div"));// Get all the elements available with tag name 'p'IList<IWebElement>elements=element.FindElements(By.TagName("p"));foreach(IWebElementeinelements){System.Console.WriteLine(e.Text);}}finally{driver.Quit();}}}}
require'selenium-webdriver'driver=Selenium::WebDriver.for:chromebegin# Navigate to URLdriver.get'https://www.example.com'# Get element with tag name 'div'element=driver.find_element(:tag_name,'div')# Get all the elements available with tag name 'p'elements=element.find_elements(:tag_name,'p')elements.each{|e|putse.text}ensuredriver.quitend
const{Builder,By}=require('selenium-webdriver');(asyncfunctionexample(){letdriver=newBuilder().forBrowser('chrome').build();awaitdriver.get('https://www.example.com');// Get element with tag name 'div'
letelement=driver.findElement(By.css("div"));// Get all the elements available with tag name 'p'
letelements=awaitelement.findElements(By.css("p"));for(leteofelements){console.log(awaite.getText());}})();
importorg.openqa.selenium.Byimportorg.openqa.selenium.chrome.ChromeDriverfunmain(){valdriver=ChromeDriver()try{driver.get("https://example.com")// Get element with tag name 'div'
valelement=driver.findElement(By.tagName("div"))// Get all the elements available with tag name 'p'
valelements=element.findElements(By.tagName("p"))for(einelements){println(e.text)}}finally{driver.quit()}}
Get Active Element
It is used to track (or) find DOM element which has the focus in the current browsing context.
importorg.openqa.selenium.*;importorg.openqa.selenium.chrome.ChromeDriver;publicclassactiveElementTest{publicstaticvoidmain(String[]args){WebDriverdriver=newChromeDriver();try{driver.get("http://www.google.com");driver.findElement(By.cssSelector("[name='q']")).sendKeys("webElement");// Get attribute of current active element
Stringattr=driver.switchTo().activeElement().getAttribute("title");System.out.println(attr);}finally{driver.quit();}}}
fromseleniumimportwebdriverfromselenium.webdriver.common.byimportBydriver=webdriver.Chrome()driver.get("https://www.google.com")driver.find_element(By.CSS_SELECTOR,'[name="q"]').send_keys("webElement")# Get attribute of current active elementattr=driver.switch_to.active_element.get_attribute("title")print(attr)
usingOpenQA.Selenium;usingOpenQA.Selenium.Chrome;namespaceActiveElement{classActiveElement{publicstaticvoidMain(string[]args){IWebDriverdriver=newChromeDriver();try{// Navigate to Urldriver.Navigate().GoToUrl("https://www.google.com");driver.FindElement(By.CssSelector("[name='q']")).SendKeys("webElement");// Get attribute of current active elementstringattr=driver.SwitchTo().ActiveElement().GetAttribute("title");System.Console.WriteLine(attr);}finally{driver.Quit();}}}}
require'selenium-webdriver'driver=Selenium::WebDriver.for:chromebegindriver.get'https://www.google.com'driver.find_element(css:'[name="q"]').send_keys('webElement')# Get attribute of current active elementattr=driver.switch_to.active_element.attribute('title')putsattrensuredriver.quitend
const{Builder,By}=require('selenium-webdriver');(asyncfunctionexample(){letdriver=awaitnewBuilder().forBrowser('chrome').build();awaitdriver.get('https://www.google.com');awaitdriver.findElement(By.css('[name="q"]')).sendKeys("webElement");// Get attribute of current active element
letattr=awaitdriver.switchTo().activeElement().getAttribute("title");console.log(`${attr}`)})();
importorg.openqa.selenium.Byimportorg.openqa.selenium.chrome.ChromeDriverfunmain(){valdriver=ChromeDriver()try{driver.get("https://www.google.com")driver.findElement(By.cssSelector("[name='q']")).sendKeys("webElement")// Get attribute of current active element
valattr=driver.switchTo().activeElement().getAttribute("title")print(attr)}finally{driver.quit()}}
2.5.4 - Interacting with web elements
A high-level instruction set for manipulating form controls.
There are only 5 basic commands that can be executed on an element:
These methods are designed to closely emulate a user’s experience, so,
unlike the Actions API, it attempts to perform two things
before attempting the specified action.
If it determines the element is outside the viewport, it
scrolls the element into view, specifically
it will align the bottom of the element with the bottom of the viewport.
It ensures the element is interactable
before taking the action. This could mean that the scrolling was unsuccessful, or that the
element is not otherwise displayed. Determining if an element is displayed on a page was too difficult to
define directly in the webdriver specification,
so Selenium sends an execute command with a JavaScript atom that checks for things that would keep
the element from being displayed. If it determines an element is not in the viewport, not displayed, not
keyboard-interactable, or not
pointer-interactable,
it returns an element not interactable error.
driver.get("https://www.selenium.dev/selenium/web/inputs.html");// Click on the element
WebElementcheckInput=driver.findElement(By.name("checkbox_input"));checkInput.click();
# Navigate to urldriver.get("https://www.selenium.dev/selenium/web/inputs.html")# Click on the element driver.find_element(By.NAME,"color_input").click()
// Navigate to Urldriver.Navigate().GoToUrl("https://www.selenium.dev/selenium/web/inputs.html");// Click the elementdriver.FindElement(By.Name("color_input")).Click();
# Navigate to URLdriver.get'https://www.selenium.dev/selenium/web/inputs.html'# Click the elementdriver.find_element(name:'color_input').click
// Navigate to Url
awaitdriver.get('https://www.selenium.dev/selenium/web/inputs.html');// Click the element
awaitdriver.findElement(By.name('color_input')).click();
// Navigate to Url
driver.get("https://www.selenium.dev/selenium/web/inputs.html")// Click the element
driver.findElement(By.name("color_input")).click();
Send keys
The element send keys command
types the provided keys into an editable element.
Typically, this means an element is an input element of a form with a text type or an element
with a content-editable attribute. If it is not editable,
an invalid element state error is returned.
Here is the list of
possible keystrokes that WebDriver Supports.
// Clear field to empty it from any previous data
WebElementemailInput=driver.findElement(By.name("email_input"));emailInput.clear();//Enter Text
Stringemail="admin@localhost.dev";emailInput.sendKeys(email);
# Navigate to urldriver.get("https://www.selenium.dev/selenium/web/inputs.html")# Clear field to empty it from any previous datadriver.find_element(By.NAME,"email_input").clear()# Enter Textdriver.find_element(By.NAME,"email_input").send_keys("admin@localhost.dev")
// Navigate to Urldriver.Navigate().GoToUrl("https://www.selenium.dev/selenium/web/inputs.html");// Clear field to empty it from any previous datadriver.FindElement(By.Name("email_input")).Clear();//Enter Textdriver.FindElement(By.Name("email_input")).SendKeys("admin@localhost.dev");}
# Navigate to URLdriver.get'https://www.selenium.dev/selenium/web/inputs.html'# Clear field to empty it from any previous datadriver.find_element(name:'email_input').clear# Enter Textdriver.find_element(name:'email_input').send_keys'admin@localhost.dev'
// Navigate to Url
awaitdriver.get('https://www.selenium.dev/selenium/web/inputs.html');//Clear field to empty it from any previous data
awaitdriver.findElement(By.name('email_input')).clear();// Enter text
awaitdriver.findElement(By.name('email_input')).sendKeys('admin@localhost.dev');
// Navigate to Url
driver.get("https://www.selenium.dev/selenium/web/inputs.html")//Clear field to empty it from any previous data
driver.findElement(By.name("email_input")).clear()// Enter text
driver.findElement(By.name("email_input")).sendKeys("admin@localhost.dev")
Clear
The element clear command resets the content of an element.
This requires an element to be editable,
and resettable. Typically,
this means an element is an input element of a form with a text type or an element
with acontent-editable attribute. If these conditions are not met,
an invalid element state error is returned.
//Clear Element
// Clear field to empty it from any previous data
emailInput.clear();
# Navigate to urldriver.get("https://www.selenium.dev/selenium/web/inputs.html")# Clear field to empty it from any previous datadriver.find_element(By.NAME,"email_input").clear()
// Navigate to Urldriver.Navigate().GoToUrl("https://www.selenium.dev/selenium/web/inputs.html");// Clear field to empty it from any previous datadriver.FindElement(By.Name("email_input")).Clear();}
# Navigate to URLdriver.get'https://www.selenium.dev/selenium/web/inputs.html'# Clear field to empty it from any previous datadriver.find_element(name:'email_input').clear
// Navigate to Url
awaitdriver.get('https://www.selenium.dev/selenium/web/inputs.html');//Clear field to empty it from any previous data
awaitdriver.findElement(By.name('email_input')).clear();
// Navigate to Url
driver.get("https://www.selenium.dev/selenium/web/inputs.html")//Clear field to empty it from any previous data
driver.findElement(By.name("email_input")).clear()
Submit
In Selenium 4 this is no longer implemented with a separate endpoint and functions by executing a script. As
such, it is recommended not to use this method and to click the applicable form submission button instead.
2.5.5 - Information about web elements
What you can learn about an element.
There are a number of details you can query about a specific element.
Is Displayed
This method is used to check if the connected Element is
displayed on a webpage. Returns a Boolean value,
True if the connected element is displayed in the current
browsing context else returns false.
This functionality is mentioned in, but not defined by
the w3c specification due to the
impossibility of covering all potential conditions.
As such, Selenium cannot expect drivers to implement
this functionality directly, and now relies on
executing a large JavaScript function directly.
This function makes many approximations about an element’s
nature and relationship in the tree to return a value.
// Navigate to the url
driver.get("https://www.selenium.dev/selenium/web/inputs.html");// Get boolean value for is element display
booleanisEmailVisible=driver.findElement(By.name("email_input")).isDisplayed();
# Navigate to the urldriver.get("https://www.selenium.dev/selenium/web/inputs.html")# Get boolean value for is element displayis_email_visible=driver.find_element(By.NAME,"email_input").is_displayed()
//Navigate to the urldriver.Url="https://www.selenium.dev/selenium/web/inputs.html";//Get boolean value for is element displayBooleanis_email_visible=driver.FindElement(By.Name("email_input")).Displayed;
# Navigate to the urldriver.get("https://www.selenium.dev/selenium/web/inputs.html");#fetch display statusval=driver.find_element(name:'email_input').displayed?
// Resolves Promise and returns boolean value
letresult=awaitdriver.findElement(By.name("email_input")).isDisplayed();
//navigates to url
driver.get("https://www.selenium.dev/selenium/web/inputs.html")//returns true if element is displayed else returns false
valflag=driver.findElement(By.name("email_input")).isDisplayed()
Is Enabled
This method is used to check if the connected Element
is enabled or disabled on a webpage.
Returns a boolean value, True if the connected element is
enabled in the current browsing context else returns false.
//navigates to url
driver.get("https://www.selenium.dev/selenium/web/inputs.html");//returns true if element is enabled else returns false
booleanvalue=driver.findElement(By.name("button_input")).isEnabled();
# Navigate to urldriver.get("https://www.selenium.dev/selenium/web/inputs.html")# Returns true if element is enabled else returns falsevalue=driver.find_element(By.NAME,'button_input').is_enabled()
// Navigate to Urldriver.Navigate().GoToUrl("https://www.selenium.dev/selenium/web/inputs.html");// Store the WebElementIWebElementelement=driver.FindElement(By.Name("button_input"));// Prints true if element is enabled else returns falseSystem.Console.WriteLine(element.Enabled);
# Navigate to urldriver.get'https://www.selenium.dev/selenium/web/inputs.html'# Returns true if element is enabled else returns falseele=driver.find_element(name:'button_input').enabled?
// Resolves Promise and returns boolean value
letelement=awaitdriver.findElement(By.name("button_input")).isEnabled();
//navigates to url
driver.get("https://www.selenium.dev/selenium/web/inputs.html")//returns true if element is enabled else returns false
valattr=driver.findElement(By.name("button_input")).isEnabled()
Is Selected
This method determines if the referenced Element
is Selected or not. This method is widely used on
Check boxes, radio buttons, input elements, and option elements.
Returns a boolean value, True if referenced element is
selected in the current browsing context else returns false.
//navigates to url
driver.get("https://www.selenium.dev/selenium/web/inputs.html");//returns true if element is checked else returns false
booleanvalue=driver.findElement(By.name("checkbox_input")).isSelected();
# Navigate to urldriver.get("https://www.selenium.dev/selenium/web/inputs.html")# Returns true if element is checked else returns falsevalue=driver.find_element(By.NAME,"checkbox_input").is_selected()
// Navigate to Urldriver.Navigate().GoToUrl("https://www.selenium.dev/selenium/web/inputs.html");// Returns true if element ins checked else returns falseboolvalue=driver.FindElement(By.Name("checkbox_input")).Selected;
# Navigate to urldriver.get'https://www.selenium.dev/selenium/web/inputs.html'# Returns true if element is checked else returns falseele=driver.find_element(name:"checkbox_input").selected?
// Returns true if element ins checked else returns false
letisSelected=awaitdriver.findElement(By.name("checkbox_input")).isSelected();
//navigates to url
driver.get("https://www.selenium.dev/selenium/web/inputs.html")//returns true if element is checked else returns false
valattr=driver.findElement(By.name("checkbox_input")).isSelected()
Tag Name
It is used to fetch the TagName
of the referenced Element which has the focus in the current browsing context.
//navigates to url
driver.get("https://www.selenium.dev/selenium/web/inputs.html");//returns TagName of the element
Stringvalue=driver.findElement(By.name("email_input")).getTagName();
# Navigate to urldriver.get("https://www.selenium.dev/selenium/web/inputs.html")# Returns TagName of the elementattr=driver.find_element(By.NAME,"email_input").tag_name
// Navigate to Urldriver.Navigate().GoToUrl("https://www.selenium.dev/selenium/web/inputs.html");// Returns TagName of the elementstringattr=driver.FindElement(By.Name("email_input")).TagName;
# Navigate to urldriver.get'https://www.selenium.dev/selenium/web/inputs.html'# Returns TagName of the elementattr=driver.find_element(name:"email_input").tag_name
// Returns TagName of the element
letvalue=awaitdriver.findElement(By.name('email_input')).getTagName();
//navigates to url
driver.get("https://www.selenium.dev/selenium/web/inputs.html")//returns TagName of the element
valattr=driver.findElement(By.name("email_input")).getTagName()
Size and Position
It is used to fetch the dimensions and coordinates
of the referenced element.
The fetched data body contain the following details:
X-axis position from the top-left corner of the element
y-axis position from the top-left corner of the element
// Navigate to url
driver.get("https://www.selenium.dev/selenium/web/inputs.html");// Returns height, width, x and y coordinates referenced element
Rectangleres=driver.findElement(By.name("range_input")).getRect();// Rectangle class provides getX,getY, getWidth, getHeight methods
System.out.println(res.getX());
# Navigate to urldriver.get("https://www.selenium.dev/selenium/web/inputs.html")# Returns height, width, x and y coordinates referenced elementres=driver.find_element(By.NAME,"range_input").rect
// Navigate to Urldriver.Navigate().GoToUrl("https://www.selenium.dev/selenium/web/inputs.html");varres=driver.FindElement(By.Name("range_input"));// Return x and y coordinates referenced elementSystem.Console.WriteLine(res.Location);// Returns height, widthSystem.Console.WriteLine(res.Size);
# Navigate to urldriver.get'https://www.selenium.dev/selenium/web/inputs.html'# Returns height, width, x and y coordinates referenced elementres=driver.find_element(name:"range_input").rect
// Navigate to url
driver.get("https://www.selenium.dev/selenium/web/inputs.html")// Returns height, width, x and y coordinates referenced element
valres=driver.findElement(By.name("range_input")).rect// Rectangle class provides getX,getY, getWidth, getHeight methods
println(res.getX())
Get CSS Value
Retrieves the value of specified computed style property
of an element in the current browsing context.
// Navigate to Url
driver.get("https://www.selenium.dev/selenium/web/colorPage.html");// Retrieves the computed style property 'color' of linktext
StringcssValue=driver.findElement(By.id("namedColor")).getCssValue("background-color");
# Navigate to Urldriver.get('https://www.selenium.dev/selenium/web/colorPage.html')# Retrieves the computed style property 'color' of linktextcssValue=driver.find_element(By.ID,"namedColor").value_of_css_property('background-color')
// Navigate to Urldriver.Navigate().GoToUrl("https://www.selenium.dev/selenium/web/colorPage.html");// Retrieves the computed style property 'color' of linktextStringcssValue=driver.FindElement(By.Id("namedColor")).GetCssValue("background-color");
# Navigate to Urldriver.get'https://www.selenium.dev/selenium/web/colorPage.html'# Retrieves the computed style property 'color' of linktextcssValue=driver.find_element(:id,'namedColor').css_value('background-color')
awaitdriver.get('https://www.selenium.dev/selenium/web/colorPage.html');// Returns background color of the element
letvalue=awaitdriver.findElement(By.id('namedColor')).getCssValue('background-color');
// Navigate to Url
driver.get("https://www.selenium.dev/selenium/web/colorPage.html")// Retrieves the computed style property 'color' of linktext
valcssValue=driver.findElement(By.id("namedColor")).getCssValue("background-color")
Text Content
Retrieves the rendered text of the specified element.
// Navigate to url
driver.get("https://www.selenium.dev/selenium/web/linked_image.html");// Retrieves the text of the element
Stringtext=driver.findElement(By.id("justanotherlink")).getText();
# Navigate to urldriver.get("https://www.selenium.dev/selenium/web/linked_image.html")# Retrieves the text of the elementtext=driver.find_element(By.ID,"justanotherlink").text
// Navigate to urldriver.Url="https://www.selenium.dev/selenium/web/linked_image.html";// Retrieves the text of the elementStringtext=driver.FindElement(By.Id("justanotherlink")).Text;
# Navigate to urldriver.get'https://www.selenium.dev/selenium/web/linked_image.html'# Retrieves the text of the elementtext=driver.find_element(:id,'justanotherlink').text
awaitdriver.get('https://www.selenium.dev/selenium/web/linked_image.html');// Returns text of the element
lettext=awaitdriver.findElement(By.id('justanotherLink')).getText();
// Navigate to URL
driver.get("https://www.selenium.dev/selenium/web/linked_image.html")// retrieves the text of the element
valtext=driver.findElement(By.id("justanotherlink")).getText()
Fetching Attributes or Properties
Fetches the run time value associated with a
DOM attribute. It returns the data associated
with the DOM attribute or property of the element.
//Navigate to the url
driver.get("https://www.selenium.dev/selenium/web/inputs.html");//identify the email text box
WebElementemailTxt=driver.findElement(By.name(("email_input")));//fetch the value property associated with the textbox
StringvalueInfo=eleSelLink.getAttribute("value");
# Navigate to the urldriver.get("https://www.selenium.dev/selenium/web/inputs.html")# Identify the email text boxemail_txt=driver.find_element(By.NAME,"email_input")# Fetch the value property associated with the textboxvalue_info=email_txt.get_attribute("value")
//Navigate to the urldriver.Url="https://www.selenium.dev/selenium/web/inputs.html";//identify the email text boxIWebElementemailTxt=driver.FindElement(By.Name(("email_input")));//fetch the value property associated with the textboxStringvalueInfo=eleSelLink.GetAttribute("value");
# Navigate to the urldriver.get("https://www.selenium.dev/selenium/web/inputs.html");#identify the email text boxemail_element=driver.find_element(name:'email_input')#fetch the value property associated with the textboxemailVal=email_element.attribute("value");
// identify the email text box
constemailElement=awaitdriver.findElement(By.xpath('//input[@name="email_input"]'));//fetch the attribute "name" associated with the textbox
constnameAttribute=awaitemailElement.getAttribute("name");
// Navigate to URL
driver.get("https://www.selenium.dev/selenium/web/inputs.html")//fetch the value property associated with the textbox
valattr=driver.findElement(By.name("email_input")).getAttribute("value")
2.6 - Browser interactions
Get browser information
Get title
You can read the current page title from the browser:
2.6.2 - JavaScript alerts, prompts and confirmations
WebDriver provides an API for working with the three types of native
popup messages offered by JavaScript. These popups are styled by the
browser and offer limited customisation.
Alerts
The simplest of these is referred to as an alert, which shows a
custom message, and a single button which dismisses the alert, labelled
in most browsers as OK. It can also be dismissed in most browsers by
pressing the close button, but this will always do the same thing as
the OK button. See an example alert.
WebDriver can get the text from the popup and accept or dismiss these
alerts.
//Click the link to activate the alert
driver.findElement(By.linkText("See an example alert")).click();//Wait for the alert to be displayed and store it in a variable
Alertalert=wait.until(ExpectedConditions.alertIsPresent());//Store the alert text in a variable
Stringtext=alert.getText();//Press the OK button
alert.accept();
# Click the link to activate the alertdriver.find_element(By.LINK_TEXT,"See an example alert").click()# Wait for the alert to be displayed and store it in a variablealert=wait.until(expected_conditions.alert_is_present())# Store the alert text in a variabletext=alert.text# Press the OK buttonalert.accept()
//Click the link to activate the alertdriver.FindElement(By.LinkText("See an example alert")).Click();//Wait for the alert to be displayed and store it in a variableIAlertalert=wait.Until(ExpectedConditions.AlertIsPresent());//Store the alert text in a variablestringtext=alert.Text;//Press the OK buttonalert.Accept();
# Click the link to activate the alertdriver.find_element(:link_text,'See an example alert').click# Store the alert reference in a variablealert=driver.switch_to.alert# Store the alert text in a variablealert_text=alert.text# Press on OK buttonalert.accept
//Click the link to activate the alert
awaitdriver.findElement(By.linkText('See an example alert')).click();// Wait for the alert to be displayed
awaitdriver.wait(until.alertIsPresent());// Store the alert in a variable
letalert=awaitdriver.switchTo().alert();//Store the alert text in a variable
letalertText=awaitalert.getText();//Press the OK button
awaitalert.accept();// Note: To use await, the above code should be inside an async function
//Click the link to activate the alert
driver.findElement(By.linkText("See an example alert")).click()//Wait for the alert to be displayed and store it in a variable
valalert=wait.until(ExpectedConditions.alertIsPresent())//Store the alert text in a variable
valtext=alert.getText()//Press the OK button
alert.accept()
Confirm
A confirm box is similar to an alert, except the user can also choose
to cancel the message. See
a sample confirm.
This example also shows a different approach to storing an alert:
//Click the link to activate the alert
driver.findElement(By.linkText("See a sample confirm")).click();//Wait for the alert to be displayed
wait.until(ExpectedConditions.alertIsPresent());//Store the alert in a variable
Alertalert=driver.switchTo().alert();//Store the alert in a variable for reuse
Stringtext=alert.getText();//Press the Cancel button
alert.dismiss();
# Click the link to activate the alertdriver.find_element(By.LINK_TEXT,"See a sample confirm").click()# Wait for the alert to be displayedwait.until(expected_conditions.alert_is_present())# Store the alert in a variable for reusealert=driver.switch_to.alert# Store the alert text in a variabletext=alert.text# Press the Cancel buttonalert.dismiss()
//Click the link to activate the alertdriver.FindElement(By.LinkText("See a sample confirm")).Click();//Wait for the alert to be displayedwait.Until(ExpectedConditions.AlertIsPresent());//Store the alert in a variableIAlertalert=driver.SwitchTo().Alert();//Store the alert in a variable for reusestringtext=alert.Text;//Press the Cancel buttonalert.Dismiss();
# Click the link to activate the alertdriver.find_element(:link_text,'See a sample confirm').click# Store the alert reference in a variablealert=driver.switch_to.alert# Store the alert text in a variablealert_text=alert.text# Press on Cancel buttonalert.dismiss
//Click the link to activate the alert
awaitdriver.findElement(By.linkText('See a sample confirm')).click();// Wait for the alert to be displayed
awaitdriver.wait(until.alertIsPresent());// Store the alert in a variable
letalert=awaitdriver.switchTo().alert();//Store the alert text in a variable
letalertText=awaitalert.getText();//Press the Cancel button
awaitalert.dismiss();// Note: To use await, the above code should be inside an async function
//Click the link to activate the alert
driver.findElement(By.linkText("See a sample confirm")).click()//Wait for the alert to be displayed
wait.until(ExpectedConditions.alertIsPresent())//Store the alert in a variable
valalert=driver.switchTo().alert()//Store the alert in a variable for reuse
valtext=alert.text//Press the Cancel button
alert.dismiss()
Prompt
Prompts are similar to confirm boxes, except they also include a text
input. Similar to working with form elements, you can use WebDriver’s
send keys to fill in a response. This will completely replace the placeholder
text. Pressing the cancel button will not submit any text.
See a sample prompt.
//Click the link to activate the alert
driver.findElement(By.linkText("See a sample prompt")).click();//Wait for the alert to be displayed and store it in a variable
Alertalert=wait.until(ExpectedConditions.alertIsPresent());//Type your message
alert.sendKeys("Selenium");//Press the OK button
alert.accept();
# Click the link to activate the alertdriver.find_element(By.LINK_TEXT,"See a sample prompt").click()# Wait for the alert to be displayedwait.until(expected_conditions.alert_is_present())# Store the alert in a variable for reusealert=Alert(driver)# Type your messagealert.send_keys("Selenium")# Press the OK buttonalert.accept()
//Click the link to activate the alertdriver.FindElement(By.LinkText("See a sample prompt")).Click();//Wait for the alert to be displayed and store it in a variableIAlertalert=wait.Until(ExpectedConditions.AlertIsPresent());//Type your messagealert.SendKeys("Selenium");//Press the OK buttonalert.Accept();
# Click the link to activate the alertdriver.find_element(:link_text,'See a sample prompt').click# Store the alert reference in a variablealert=driver.switch_to.alert# Type a messagealert.send_keys("selenium")# Press on Ok buttonalert.accept
//Click the link to activate the alert
awaitdriver.findElement(By.linkText('See a sample prompt')).click();// Wait for the alert to be displayed
awaitdriver.wait(until.alertIsPresent());// Store the alert in a variable
letalert=awaitdriver.switchTo().alert();//Type your message
awaitalert.sendKeys("Selenium");//Press the OK button
awaitalert.accept();//Note: To use await, the above code should be inside an async function
//Click the link to activate the alert
driver.findElement(By.linkText("See a sample prompt")).click()//Wait for the alert to be displayed and store it in a variable
valalert=wait.until(ExpectedConditions.alertIsPresent())//Type your message
alert.sendKeys("Selenium")//Press the OK button
alert.accept()
2.6.3 - Working with cookies
A cookie is a small piece of data that is sent from a website and stored in your computer.
Cookies are mostly used to recognise the user and load the stored information.
WebDriver API provides a way to interact with cookies with built-in methods:
Add Cookie
It is used to add a cookie to the current browsing context.
Add Cookie only accepts a set of defined serializable JSON object. Here
is the link to the list of accepted JSON key values
First of all, you need to be on the domain that the cookie will be
valid for. If you are trying to preset cookies before
you start interacting with a site and your homepage is large / takes a while to load
an alternative is to find a smaller page on the site (typically the 404 page is small,
e.g. http://example.com/some404page)
importorg.openqa.selenium.*;importorg.openqa.selenium.chrome.ChromeDriver;publicclassaddCookie{publicstaticvoidmain(String[]args){WebDriverdriver=newChromeDriver();try{driver.get("http://www.example.com");// Adds the cookie into current browser context
driver.manage().addCookie(newCookie("key","value"));}finally{driver.quit();}}}
fromseleniumimportwebdriverdriver=webdriver.Chrome()driver.get("http://www.example.com")# Adds the cookie into current browser contextdriver.add_cookie({"name":"key","value":"value"})
usingOpenQA.Selenium;usingOpenQA.Selenium.Chrome;namespaceAddCookie{classAddCookie{publicstaticvoidMain(string[]args){IWebDriverdriver=newChromeDriver();try{// Navigate to Urldriver.Navigate().GoToUrl("https://example.com");// Adds the cookie into current browser contextdriver.Manage().Cookies.AddCookie(newCookie("key","value"));}finally{driver.Quit();}}}}
require'selenium-webdriver'driver=Selenium::WebDriver.for:chromebegindriver.get'https://www.example.com'# Adds the cookie into current browser contextdriver.manage.add_cookie(name:"key",value:"value")ensuredriver.quitend
it('Create a cookie',asyncfunction(){awaitdriver.get('https://www.selenium.dev/selenium/web/blank.html');// set a cookie on the current domain
awaitdriver.manage().addCookie({name:'key',value:'value'});
importorg.openqa.selenium.Cookieimportorg.openqa.selenium.chrome.ChromeDriverfunmain(){valdriver=ChromeDriver()try{driver.get("https://example.com")// Adds the cookie into current browser context
driver.manage().addCookie(Cookie("key","value"))}finally{driver.quit()}}
Get Named Cookie
It returns the serialized cookie data matching with the cookie name among all associated cookies.
importorg.openqa.selenium.*;importorg.openqa.selenium.chrome.ChromeDriver;publicclassgetCookieNamed{publicstaticvoidmain(String[]args){WebDriverdriver=newChromeDriver();try{driver.get("http://www.example.com");driver.manage().addCookie(newCookie("foo","bar"));// Get cookie details with named cookie 'foo'
Cookiecookie1=driver.manage().getCookieNamed("foo");System.out.println(cookie1);}finally{driver.quit();}}}
fromseleniumimportwebdriverdriver=webdriver.Chrome()# Navigate to urldriver.get("http://www.example.com")# Adds the cookie into current browser contextdriver.add_cookie({"name":"foo","value":"bar"})# Get cookie details with named cookie 'foo'print(driver.get_cookie("foo"))
usingOpenQA.Selenium;usingOpenQA.Selenium.Chrome;namespaceGetCookieNamed{classGetCookieNamed{publicstaticvoidMain(string[]args){IWebDriverdriver=newChromeDriver();try{// Navigate to Urldriver.Navigate().GoToUrl("https://example.com");driver.Manage().Cookies.AddCookie(newCookie("foo","bar"));// Get cookie details with named cookie 'foo'varcookie=driver.Manage().Cookies.GetCookieNamed("foo");System.Console.WriteLine(cookie);}finally{driver.Quit();}}}}
require'selenium-webdriver'driver=Selenium::WebDriver.for:chromebegindriver.get'https://www.example.com'driver.manage.add_cookie(name:"foo",value:"bar")# Get cookie details with named cookie 'foo'putsdriver.manage.cookie_named('foo')ensuredriver.quitend
it('Read cookie',asyncfunction(){awaitdriver.get('https://www.selenium.dev/selenium/web/blank.html');// set a cookie on the current domain
awaitdriver.manage().addCookie({name:'foo',value:'bar'});// Get cookie details with named cookie 'foo'
awaitdriver.manage().getCookie('foo').then(function(cookie){console.log('cookie details => ',cookie);});
importorg.openqa.selenium.Cookieimportorg.openqa.selenium.chrome.ChromeDriverfunmain(){valdriver=ChromeDriver()try{driver.get("https://example.com")driver.manage().addCookie(Cookie("foo","bar"))// Get cookie details with named cookie 'foo'
valcookie=driver.manage().getCookieNamed("foo")println(cookie)}finally{driver.quit()}}
Get All Cookies
It returns a ‘successful serialized cookie data’ for current browsing context.
If browser is no longer available it returns error.
importorg.openqa.selenium.*;importorg.openqa.selenium.chrome.ChromeDriver;importjava.util.Set;publicclassgetAllCookies{publicstaticvoidmain(String[]args){WebDriverdriver=newChromeDriver();try{driver.get("http://www.example.com");// Add few cookies
driver.manage().addCookie(newCookie("test1","cookie1"));driver.manage().addCookie(newCookie("test2","cookie2"));// Get All available cookies
Set<Cookie>cookies=driver.manage().getCookies();System.out.println(cookies);}finally{driver.quit();}}}
fromseleniumimportwebdriverdriver=webdriver.Chrome()# Navigate to urldriver.get("http://www.example.com")driver.add_cookie({"name":"test1","value":"cookie1"})driver.add_cookie({"name":"test2","value":"cookie2"})# Get all available cookiesprint(driver.get_cookies())
usingOpenQA.Selenium;usingOpenQA.Selenium.Chrome;namespaceGetAllCookies{classGetAllCookies{publicstaticvoidMain(string[]args){IWebDriverdriver=newChromeDriver();try{// Navigate to Urldriver.Navigate().GoToUrl("https://example.com");driver.Manage().Cookies.AddCookie(newCookie("test1","cookie1"));driver.Manage().Cookies.AddCookie(newCookie("test2","cookie2"));// Get All available cookiesvarcookies=driver.Manage().Cookies.AllCookies;}finally{driver.Quit();}}}}
require'selenium-webdriver'driver=Selenium::WebDriver.for:chromebegindriver.get'https://www.example.com'driver.manage.add_cookie(name:"test1",value:"cookie1")driver.manage.add_cookie(name:"test2",value:"cookie2")# Get all available cookiesputsdriver.manage.all_cookiesensuredriver.quitend
it('Read all cookies',asyncfunction(){awaitdriver.get('https://www.selenium.dev/selenium/web/blank.html');// Add few cookies
awaitdriver.manage().addCookie({name:'test1',value:'cookie1'});awaitdriver.manage().addCookie({name:'test2',value:'cookie2'});// Get all Available cookies
awaitdriver.manage().getCookies().then(function(cookies){console.log('cookie details => ',cookies);});
importorg.openqa.selenium.Cookieimportorg.openqa.selenium.chrome.ChromeDriverfunmain(){valdriver=ChromeDriver()try{driver.get("https://example.com")driver.manage().addCookie(Cookie("test1","cookie1"))driver.manage().addCookie(Cookie("test2","cookie2"))// Get All available cookies
valcookies=driver.manage().cookiesprintln(cookies)}finally{driver.quit()}}
Delete Cookie
It deletes the cookie data matching with the provided cookie name.
importorg.openqa.selenium.*;importorg.openqa.selenium.chrome.ChromeDriver;publicclassdeleteCookie{publicstaticvoidmain(String[]args){WebDriverdriver=newChromeDriver();try{driver.get("http://www.example.com");driver.manage().addCookie(newCookie("test1","cookie1"));Cookiecookie1=newCookie("test2","cookie2");driver.manage().addCookie(cookie1);// delete a cookie with name 'test1'
driver.manage().deleteCookieNamed("test1");/*
Selenium Java bindings also provides a way to delete
cookie by passing cookie object of current browsing context
*/driver.manage().deleteCookie(cookie1);}finally{driver.quit();}}}
fromseleniumimportwebdriverdriver=webdriver.Chrome()# Navigate to urldriver.get("http://www.example.com")driver.add_cookie({"name":"test1","value":"cookie1"})driver.add_cookie({"name":"test2","value":"cookie2"})# Delete a cookie with name 'test1'driver.delete_cookie("test1")
usingOpenQA.Selenium;usingOpenQA.Selenium.Chrome;namespaceDeleteCookie{classDeleteCookie{publicstaticvoidMain(string[]args){IWebDriverdriver=newChromeDriver();try{// Navigate to Urldriver.Navigate().GoToUrl("https://example.com");driver.Manage().Cookies.AddCookie(newCookie("test1","cookie1"));varcookie=newCookie("test2","cookie2");driver.Manage().Cookies.AddCookie(cookie);// delete a cookie with name 'test1' driver.Manage().Cookies.DeleteCookieNamed("test1");// Selenium .net bindings also provides a way to delete// cookie by passing cookie object of current browsing contextdriver.Manage().Cookies.DeleteCookie(cookie);}finally{driver.Quit();}}}}
require'selenium-webdriver'driver=Selenium::WebDriver.for:chromebegindriver.get'https://www.example.com'driver.manage.add_cookie(name:"test1",value:"cookie1")driver.manage.add_cookie(name:"test2",value:"cookie2")# delete a cookie with name 'test1'driver.manage.delete_cookie('test1')ensuredriver.quitend
it('Delete a cookie',asyncfunction(){awaitdriver.get('https://www.selenium.dev/selenium/web/blank.html');// Add few cookies
awaitdriver.manage().addCookie({name:'test1',value:'cookie1'});awaitdriver.manage().addCookie({name:'test2',value:'cookie2'});// Delete a cookie with name 'test1'
awaitdriver.manage().deleteCookie('test1');// Get all Available cookies
awaitdriver.manage().getCookies().then(function(cookies){console.log('cookie details => ',cookies);});
importorg.openqa.selenium.Cookieimportorg.openqa.selenium.chrome.ChromeDriverfunmain(){valdriver=ChromeDriver()try{driver.get("https://example.com")driver.manage().addCookie(Cookie("test1","cookie1"))valcookie1=Cookie("test2","cookie2")driver.manage().addCookie(cookie1)// delete a cookie with name 'test1'
driver.manage().deleteCookieNamed("test1")// delete cookie by passing cookie object of current browsing context.
driver.manage().deleteCookie(cookie1)}finally{driver.quit()}}
Delete All Cookies
It deletes all the cookies of the current browsing context.
importorg.openqa.selenium.*;importorg.openqa.selenium.chrome.ChromeDriver;publicclassdeleteAllCookies{publicstaticvoidmain(String[]args){WebDriverdriver=newChromeDriver();try{driver.get("http://www.example.com");driver.manage().addCookie(newCookie("test1","cookie1"));driver.manage().addCookie(newCookie("test2","cookie2"));// deletes all cookies
driver.manage().deleteAllCookies();}finally{driver.quit();}}}
fromseleniumimportwebdriverdriver=webdriver.Chrome()# Navigate to urldriver.get("http://www.example.com")driver.add_cookie({"name":"test1","value":"cookie1"})driver.add_cookie({"name":"test2","value":"cookie2"})# Deletes all cookiesdriver.delete_all_cookies()
usingOpenQA.Selenium;usingOpenQA.Selenium.Chrome;namespaceDeleteAllCookies{classDeleteAllCookies{publicstaticvoidMain(string[]args){IWebDriverdriver=newChromeDriver();try{// Navigate to Urldriver.Navigate().GoToUrl("https://example.com");driver.Manage().Cookies.AddCookie(newCookie("test1","cookie1"));driver.Manage().Cookies.AddCookie(newCookie("test2","cookie2"));// deletes all cookiesdriver.Manage().Cookies.DeleteAllCookies();}finally{driver.Quit();}}}}
require'selenium-webdriver'driver=Selenium::WebDriver.for:chromebegindriver.get'https://www.example.com'driver.manage.add_cookie(name:"test1",value:"cookie1")driver.manage.add_cookie(name:"test2",value:"cookie2")# deletes all cookiesdriver.manage.delete_all_cookiesensuredriver.quitend
it('Delete all cookies',asyncfunction(){awaitdriver.get('https://www.selenium.dev/selenium/web/blank.html');// Add few cookies
awaitdriver.manage().addCookie({name:'test1',value:'cookie1'});awaitdriver.manage().addCookie({name:'test2',value:'cookie2'});// Delete all cookies
awaitdriver.manage().deleteAllCookies();
importorg.openqa.selenium.Cookieimportorg.openqa.selenium.chrome.ChromeDriverfunmain(){valdriver=ChromeDriver()try{driver.get("https://example.com")driver.manage().addCookie(Cookie("test1","cookie1"))driver.manage().addCookie(Cookie("test2","cookie2"))// deletes all cookies
driver.manage().deleteAllCookies()}finally{driver.quit()}}
Same-Site Cookie Attribute
It allows a user to instruct browsers to control whether cookies
are sent along with the request initiated by third party sites.
It is introduced to prevent CSRF (Cross-Site Request Forgery) attacks.
Same-Site cookie attribute accepts two parameters as instructions
Strict:
When the sameSite attribute is set as Strict,
the cookie will not be sent along with
requests initiated by third party websites.
Lax:
When you set a cookie sameSite attribute to Lax,
the cookie will be sent along with the GET
request initiated by third party website.
Note: As of now this feature is landed in chrome(80+version),
Firefox(79+version) and works with Selenium 4 and later versions.
fromseleniumimportwebdriverdriver=webdriver.Chrome()driver.get("http://www.example.com")# Adds the cookie into current browser context with sameSite 'Strict' (or) 'Lax'driver.add_cookie({"name":"foo","value":"value",'sameSite':'Strict'})driver.add_cookie({"name":"foo1","value":"value",'sameSite':'Lax'})cookie1=driver.get_cookie('foo')cookie2=driver.get_cookie('foo1')print(cookie1)print(cookie2)
require'selenium-webdriver'driver=Selenium::WebDriver.for:chromebegindriver.get'https://www.example.com'# Adds the cookie into current browser context with sameSite 'Strict' (or) 'Lax'driver.manage.add_cookie(name:"foo",value:"bar",same_site:"Strict")driver.manage.add_cookie(name:"foo1",value:"bar",same_site:"Lax")putsdriver.manage.cookie_named('foo')putsdriver.manage.cookie_named('foo1')ensuredriver.quitend
it('Create cookies with sameSite',asyncfunction(){awaitdriver.get('https://www.selenium.dev/selenium/web/blank.html');// set a cookie on the current domain with sameSite 'Strict' (or) 'Lax'
awaitdriver.manage().addCookie({name:'key',value:'value',sameSite:'Strict'});awaitdriver.manage().addCookie({name:'key',value:'value',sameSite:'Lax'});
Frames are a now deprecated means of building a site layout from
multiple documents on the same domain. You are unlikely to work with
them unless you are working with an pre HTML5 webapp. Iframes allow
the insertion of a document from an entirely different domain, and are
still commonly used.
If you need to work with frames or iframes, WebDriver allows you to
work with them in the same way. Consider a button within an iframe.
If we inspect the element using the browser development tools, we might
see the following:
# This won't workdriver.find_element(:tag_name,'button').click
// This won't work
awaitdriver.findElement(By.css('button')).click();
//This won't work
driver.findElement(By.tagName("button")).click()
However, if there are no buttons outside of the iframe, you might
instead get a no such element error. This happens because Selenium is
only aware of the elements in the top level document. To interact with
the button, we will need to first switch to the frame, in a similar way
to how we switch windows. WebDriver offers three ways of switching to
a frame.
Using a WebElement
Switching using a WebElement is the most flexible option. You can
find the frame using your preferred selector and switch to it.
//Store the web element
WebElementiframe=driver.findElement(By.cssSelector("#modal>iframe"));//Switch to the frame
driver.switchTo().frame(iframe);//Now we can click the button
driver.findElement(By.tagName("button")).click();
# Store iframe web elementiframe=driver.find_element(By.CSS_SELECTOR,"#modal > iframe")# switch to selected iframedriver.switch_to.frame(iframe)# Now click on buttondriver.find_element(By.TAG_NAME,'button').click()
//Store the web elementIWebElementiframe=driver.FindElement(By.CssSelector("#modal>iframe"));//Switch to the framedriver.SwitchTo().Frame(iframe);//Now we can click the buttondriver.FindElement(By.TagName("button")).Click();
# Store iframe web elementiframe=driver.find_element(:css,'#modal > iframe')# Switch to the framedriver.switch_to.frameiframe# Now, Click on the buttondriver.find_element(:tag_name,'button').click
// Store the web element
constiframe=driver.findElement(By.css('#modal > iframe'));// Switch to the frame
awaitdriver.switchTo().frame(iframe);// Now we can click the button
awaitdriver.findElement(By.css('button')).click();
//Store the web element
valiframe=driver.findElement(By.cssSelector("#modal>iframe"))//Switch to the frame
driver.switchTo().frame(iframe)//Now we can click the button
driver.findElement(By.tagName("button")).click()
Using a name or ID
If your frame or iframe has an id or name attribute, this can be used
instead. If the name or ID is not unique on the page, then the first
one found will be switched to.
//Using the ID
driver.switchTo().frame("buttonframe");//Or using the name instead
driver.switchTo().frame("myframe");//Now we can click the button
driver.findElement(By.tagName("button")).click();
# Switch frame by iddriver.switch_to.frame('buttonframe')# Now, Click on the buttondriver.find_element(By.TAG_NAME,'button').click()
//Using the IDdriver.SwitchTo().Frame("buttonframe");//Or using the name insteaddriver.SwitchTo().Frame("myframe");//Now we can click the buttondriver.FindElement(By.TagName("button")).Click();
# Switch by IDdriver.switch_to.frame'buttonframe'# Now, Click on the buttondriver.find_element(:tag_name,'button').click
// Using the ID
awaitdriver.switchTo().frame('buttonframe');// Or using the name instead
awaitdriver.switchTo().frame('myframe');// Now we can click the button
awaitdriver.findElement(By.css('button')).click();
//Using the ID
driver.switchTo().frame("buttonframe")//Or using the name instead
driver.switchTo().frame("myframe")//Now we can click the button
driver.findElement(By.tagName("button")).click()
Using an index
It is also possible to use the index of the frame, such as can be
queried using window.frames in JavaScript.
// Switches to the second frame
driver.switchTo().frame(1);
# Switch to the second framedriver.switch_to.frame(1)
// Switches to the second framedriver.SwitchTo().Frame(1);
# switching to second iframe based on indexiframe=driver.find_elements(By.TAG_NAME,'iframe')[1]# switch to selected iframedriver.switch_to.frame(iframe)
// Switches to the second frame
awaitdriver.switchTo().frame(1);
// Switches to the second frame
driver.switchTo().frame(1)
Leaving a frame
To leave an iframe or frameset, switch back to the default content
like so:
// Return to the top level
driver.switchTo().defaultContent();
# switch back to default contentdriver.switch_to.default_content()
// Return to the top leveldriver.SwitchTo().DefaultContent();
# Return to the top leveldriver.switch_to.default_content
// Return to the top level
awaitdriver.switchTo().defaultContent();
// Return to the top level
driver.switchTo().defaultContent()
2.6.5 - Working with windows and tabs
Windows and tabs
Get window handle
WebDriver does not make the distinction between windows and tabs. If
your site opens a new tab or window, Selenium will let you work with it
using a window handle. Each window has a unique identifier which remains
persistent in a single session. You can get the window handle of the
current window by using:
Clicking a link which opens in a
new window
will focus the new window or tab on screen, but WebDriver will not know which
window the Operating System considers active. To work with the new window
you will need to switch to it. If you have only two tabs or windows open,
and you know which window you start with, by the process of elimination
you can loop over both windows or tabs that WebDriver can see, and switch
to the one which is not the original.
However, Selenium 4 provides a new api NewWindow
which creates a new tab (or) new window and automatically switches to it.
//Store the ID of the original window
StringoriginalWindow=driver.getWindowHandle();//Check we don't have other windows open already
assertdriver.getWindowHandles().size()==1;//Click the link which opens in a new window
driver.findElement(By.linkText("new window")).click();//Wait for the new window or tab
wait.until(numberOfWindowsToBe(2));//Loop through until we find a new window handle
for(StringwindowHandle:driver.getWindowHandles()){if(!originalWindow.contentEquals(windowHandle)){driver.switchTo().window(windowHandle);break;}}//Wait for the new tab to finish loading content
wait.until(titleIs("Selenium documentation"));
fromseleniumimportwebdriverfromselenium.webdriver.support.uiimportWebDriverWaitfromselenium.webdriver.supportimportexpected_conditionsasECwithwebdriver.Firefox()asdriver:# Open URLdriver.get("https://seleniumhq.github.io")# Setup wait for laterwait=WebDriverWait(driver,10)# Store the ID of the original windoworiginal_window=driver.current_window_handle# Check we don't have other windows open alreadyassertlen(driver.window_handles)==1# Click the link which opens in a new windowdriver.find_element(By.LINK_TEXT,"new window").click()# Wait for the new window or tabwait.until(EC.number_of_windows_to_be(2))# Loop through until we find a new window handleforwindow_handleindriver.window_handles:ifwindow_handle!=original_window:driver.switch_to.window(window_handle)break# Wait for the new tab to finish loading contentwait.until(EC.title_is("SeleniumHQ Browser Automation"))
//Store the ID of the original windowstringoriginalWindow=driver.CurrentWindowHandle;//Check we don't have other windows open alreadyAssert.AreEqual(driver.WindowHandles.Count,1);//Click the link which opens in a new windowdriver.FindElement(By.LinkText("new window")).Click();//Wait for the new window or tabwait.Until(wd=>wd.WindowHandles.Count==2);//Loop through until we find a new window handleforeach(stringwindowindriver.WindowHandles){if(originalWindow!=window){driver.SwitchTo().Window(window);break;}}//Wait for the new tab to finish loading contentwait.Until(wd=>wd.Title=="Selenium documentation");
# Store the ID of the original windoworiginal_window=driver.window_handle# Check we don't have other windows open alreadyassert(driver.window_handles.length==1,'Expected one window')# Click the link which opens in a new windowdriver.find_element(link:'new window').click# Wait for the new window or tabwait.until{driver.window_handles.length==2}#Loop through until we find a new window handledriver.window_handles.eachdo|handle|ifhandle!=original_windowdriver.switch_to.windowhandlebreakendend#Wait for the new tab to finish loading contentwait.until{driver.title=='Selenium documentation'}
//Store the ID of the original window
constoriginalWindow=awaitdriver.getWindowHandle();//Check we don't have other windows open already
assert((awaitdriver.getAllWindowHandles()).length===1);//Click the link which opens in a new window
awaitdriver.findElement(By.linkText('new window')).click();//Wait for the new window or tab
awaitdriver.wait(async()=>(awaitdriver.getAllWindowHandles()).length===2,10000);//Loop through until we find a new window handle
constwindows=awaitdriver.getAllWindowHandles();windows.forEach(asynchandle=>{if(handle!==originalWindow){awaitdriver.switchTo().window(handle);}});//Wait for the new tab to finish loading content
awaitdriver.wait(until.titleIs('Selenium documentation'),10000);
//Store the ID of the original window
valoriginalWindow=driver.getWindowHandle()//Check we don't have other windows open already
assert(driver.getWindowHandles().size()===1)//Click the link which opens in a new window
driver.findElement(By.linkText("new window")).click()//Wait for the new window or tab
wait.until(numberOfWindowsToBe(2))//Loop through until we find a new window handle
for(windowHandleindriver.getWindowHandles()){if(!originalWindow.contentEquals(windowHandle)){driver.switchTo().window(windowHandle)break}}//Wait for the new tab to finish loading content
wait.until(titleIs("Selenium documentation"))
Create new window (or) new tab and switch
Creates a new window (or) tab and will focus the new window or tab on screen.
You don’t need to switch to work with the new window (or) tab. If you have more than two windows
(or) tabs opened other than the new window, you can loop over both windows or tabs that WebDriver can see,
and switch to the one which is not the original.
Note: This feature works with Selenium 4 and later versions.
// Opens a new tab and switches to new tab
driver.switchTo().newWindow(WindowType.TAB);// Opens a new window and switches to new window
driver.switchTo().newWindow(WindowType.WINDOW);
# Opens a new tab and switches to new tabdriver.switch_to.new_window('tab')# Opens a new window and switches to new windowdriver.switch_to.new_window('window')
// Opens a new tab and switches to new tabdriver.SwitchTo().NewWindow(WindowType.Tab)// Opens a new window and switches to new windowdriver.SwitchTo().NewWindow(WindowType.Window)
# Note: The new_window in ruby only opens a new tab (or) Window and will not switch automatically# The user has to switch to new tab (or) new window# Opens a new tab and switches to new tabdriver.manage.new_window(:tab)# Opens a new window and switches to new windowdriver.manage.new_window(:window)
// Opens a new tab and switches to new tab
awaitdriver.switchTo().newWindow('tab');// Opens a new window and switches to new window
awaitdriver.switchTo().newWindow('window');
// Opens a new tab and switches to new tab
driver.switchTo().newWindow(WindowType.TAB)// Opens a new window and switches to new window
driver.switchTo().newWindow(WindowType.WINDOW)
Closing a window or tab
When you are finished with a window or tab and it is not the
last window or tab open in your browser, you should close it and switch
back to the window you were using previously. Assuming you followed the
code sample in the previous section you will have the previous window
handle stored in a variable. Put this together and you will get:
//Close the tab or window
driver.close();//Switch back to the old tab or window
driver.switchTo().window(originalWindow);
#Close the tab or windowdriver.close()#Switch back to the old tab or windowdriver.switch_to.window(original_window)
//Close the tab or windowdriver.Close();//Switch back to the old tab or windowdriver.SwitchTo().Window(originalWindow);
#Close the tab or windowdriver.close#Switch back to the old tab or windowdriver.switch_to.windoworiginal_window
//Close the tab or window
awaitdriver.close();//Switch back to the old tab or window
awaitdriver.switchTo().window(originalWindow);
//Close the tab or window
driver.close()//Switch back to the old tab or window
driver.switchTo().window(originalWindow)
Forgetting to switch back to another window handle after closing a
window will leave WebDriver executing on the now closed page, and will
trigger a No Such Window Exception. You must switch
back to a valid window handle in order to continue execution.
Quitting the browser at the end of a session
When you are finished with the browser session you should call quit,
instead of close:
/**
* Example using JUnit
* https://junit.org/junit5/docs/current/api/org/junit/jupiter/api/AfterAll.html
*/@AfterAllpublicstaticvoidtearDown(){driver.quit();}
/*
Example using Visual Studio's UnitTesting
https://msdn.microsoft.com/en-us/library/microsoft.visualstudio.testtools.unittesting.aspx
*/[TestCleanup]publicvoidTearDown(){driver.Quit();}
/**
* Example using Mocha
* https://mochajs.org/#hooks
*/after('Tear down',asyncfunction(){awaitdriver.quit();});
/**
* Example using JUnit
* https://junit.org/junit5/docs/current/api/org/junit/jupiter/api/AfterAll.html
*/@AfterAllfuntearDown(){driver.quit()}
If not running WebDriver in a test context, you may consider using
try / finally which is offered by most languages so that an exception
will still clean up the WebDriver session.
Python’s WebDriver now supports the python context manager,
which when using the with keyword can automatically quit the driver at
the end of execution.
withwebdriver.Firefox()asdriver:# WebDriver code here...# WebDriver will automatically quit after indentation
Window management
Screen resolution can impact how your web application renders, so
WebDriver provides mechanisms for moving and resizing the browser
window.
//Access each dimension individually
intwidth=driver.manage().window().getSize().getWidth();intheight=driver.manage().window().getSize().getHeight();//Or store the dimensions and query them later
Dimensionsize=driver.manage().window().getSize();intwidth1=size.getWidth();intheight1=size.getHeight();
# Access each dimension individuallywidth=driver.get_window_size().get("width")height=driver.get_window_size().get("height")# Or store the dimensions and query them latersize=driver.get_window_size()width1=size.get("width")height1=size.get("height")
//Access each dimension individuallyintwidth=driver.Manage().Window.Size.Width;intheight=driver.Manage().Window.Size.Height;//Or store the dimensions and query them laterSystem.Drawing.Sizesize=driver.Manage().Window.Size;intwidth1=size.Width;intheight1=size.Height;
# Access each dimension individuallywidth=driver.manage.window.size.widthheight=driver.manage.window.size.height# Or store the dimensions and query them latersize=driver.manage.window.sizewidth1=size.widthheight1=size.height
// Access each dimension individually
const{width,height}=awaitdriver.manage().window().getRect();// Or store the dimensions and query them later
constrect=awaitdriver.manage().window().getRect();constwidth1=rect.width;constheight1=rect.height;
//Access each dimension individually
valwidth=driver.manage().window().size.widthvalheight=driver.manage().window().size.height//Or store the dimensions and query them later
valsize=driver.manage().window().sizevalwidth1=size.widthvalheight1=size.height
// Access each dimension individually
intx=driver.manage().window().getPosition().getX();inty=driver.manage().window().getPosition().getY();// Or store the dimensions and query them later
Pointposition=driver.manage().window().getPosition();intx1=position.getX();inty1=position.getY();
# Access each dimension individuallyx=driver.get_window_position().get('x')y=driver.get_window_position().get('y')# Or store the dimensions and query them laterposition=driver.get_window_position()x1=position.get('x')y1=position.get('y')
//Access each dimension individuallyintx=driver.Manage().Window.Position.X;inty=driver.Manage().Window.Position.Y;//Or store the dimensions and query them laterPointposition=driver.Manage().Window.Position;intx1=position.X;inty1=position.Y;
#Access each dimension individuallyx=driver.manage.window.position.xy=driver.manage.window.position.y# Or store the dimensions and query them laterrect=driver.manage.window.rectx1=rect.xy1=rect.y
// Access each dimension individually
const{x,y}=awaitdriver.manage().window().getRect();// Or store the dimensions and query them later
constrect=awaitdriver.manage().window().getRect();constx1=rect.x;consty1=rect.y;
// Access each dimension individually
valx=driver.manage().window().position.xvaly=driver.manage().window().position.y// Or store the dimensions and query them later
valposition=driver.manage().window().positionvalx1=position.xvaly1=position.y
fromseleniumimportwebdriverdriver=webdriver.Chrome()driver.get("http://www.example.com")# Returns and base64 encoded string into imagedriver.save_screenshot('./image.png')driver.quit()
usingOpenQA.Selenium;usingOpenQA.Selenium.Chrome;usingOpenQA.Selenium.Support.UI;vardriver=newChromeDriver();driver.Navigate().GoToUrl("http://www.example.com");Screenshotscreenshot=(driverasITakesScreenshot).GetScreenshot();screenshot.SaveAsFile("screenshot.png",ScreenshotImageFormat.Png);// Format values are Bmp, Gif, Jpeg, Png, Tiff
require'selenium-webdriver'driver=Selenium::WebDriver.for:chromebegindriver.get'https://example.com/'# Takes and Stores the screenshot in specified pathdriver.save_screenshot('./image.png')end
Used to capture screenshot of an element for current browsing context.
The WebDriver endpoint screenshot
returns screenshot which is encoded in Base64 format.
fromseleniumimportwebdriverfromselenium.webdriver.common.byimportBydriver=webdriver.Chrome()driver.get("http://www.example.com")ele=driver.find_element(By.CSS_SELECTOR,'h1')# Returns and base64 encoded string into imageele.screenshot('./image.png')driver.quit()
usingOpenQA.Selenium;usingOpenQA.Selenium.Chrome;usingOpenQA.Selenium.Support.UI;// Webdrivervardriver=newChromeDriver();driver.Navigate().GoToUrl("http://www.example.com");// Fetch element using FindElementvarwebElement=driver.FindElement(By.CssSelector("h1"));// Screenshot for the elementvarelementScreenshot=(webElementasITakesScreenshot).GetScreenshot();elementScreenshot.SaveAsFile("screenshot_of_element.png");
# Works with Selenium4-alpha7 Ruby bindings and aboverequire'selenium-webdriver'driver=Selenium::WebDriver.for:chromebegindriver.get'https://example.com/'ele=driver.find_element(:css,'h1')# Takes and Stores the element screenshot in specified pathele.save_screenshot('./image.jpg')end
const{Builder,By}=require('selenium-webdriver');letfs=require('fs');(asyncfunctionexample(){letdriver=awaitnewBuilder().forBrowser('chrome').build();awaitdriver.get('https://www.example.com');letele=awaitdriver.findElement(By.css("h1"));// Captures the element screenshot
letencodedString=awaitele.takeScreenshot(true);awaitfs.writeFileSync('./image.png',encodedString,'base64');awaitdriver.quit();}())
//Creating the JavascriptExecutor interface object by Type casting
JavascriptExecutorjs=(JavascriptExecutor)driver;//Button Element
WebElementbutton=driver.findElement(By.name("btnLogin"));//Executing JavaScript to click on element
js.executeScript("arguments[0].click();",button);//Get return value from script
Stringtext=(String)js.executeScript("return arguments[0].innerText",button);//Executing JavaScript directly
js.executeScript("console.log('hello world')");
# Stores the header elementheader=driver.find_element(By.CSS_SELECTOR,"h1")# Executing JavaScript to capture innerText of header elementdriver.execute_script('return arguments[0].innerText',header)
//creating Chromedriver instanceIWebDriverdriver=newChromeDriver();//Creating the JavascriptExecutor interface object by Type castingIJavaScriptExecutorjs=(IJavaScriptExecutor)driver;//Button ElementIWebElementbutton=driver.FindElement(By.Name("btnLogin"));//Executing JavaScript to click on elementjs.ExecuteScript("arguments[0].click();",button);//Get return value from scriptStringtext=(String)js.ExecuteScript("return arguments[0].innerText",button);//Executing JavaScript directlyjs.ExecuteScript("console.log('hello world')");
# Stores the header elementheader=driver.find_element(css:'h1')# Get return value from scriptresult=driver.execute_script("return arguments[0].innerText",header)# Executing JavaScript directlydriver.execute_script("alert('hello world')")
// Stores the header element
letheader=awaitdriver.findElement(By.css('h1'));// Executing JavaScript to capture innerText of header element
lettext=awaitdriver.executeScript('return arguments[0].innerText',header);
// Stores the header element
valheader=driver.findElement(By.cssSelector("h1"))// Get return value from script
valresult=driver.executeScript("return arguments[0].innerText",header)// Executing JavaScript directly
driver.executeScript("alert('hello world')")
Print Page
Prints the current page within the browser.
Note: This requires Chromium Browsers to be in headless mode
Web applications can enable a public key-based authentication mechanism known as Web Authentication to authenticate users in a passwordless manner.
Web Authentication defines APIs that allows a user to create a public-key credential and register it with an authenticator.
An authenticator can be a hardware device or a software entity that stores user’s public-key credentials and retrieves them on request.
As the name suggests, Virtual Authenticator emulates such authenticators for testing.
Virtual Authenticator Options
A Virtual Authenticatior has a set of properties.
These properties are mapped as VirtualAuthenticatorOptions in the Selenium bindings.
A low-level interface for providing virtualized device input actions to the web browser.
In addition to the high-level element interactions,
the Actions API provides granular control over
exactly what designated input devices can do. Selenium provides an interface for 3 kinds of input sources:
a key input for keyboard devices, a pointer input for a mouse, pen or touch devices,
and wheel inputs for scroll wheel devices (introduced in Selenium 4.2).
Selenium allows you to construct individual action commands assigned to specific
inputs and chain them together and call the associated perform method to execute them all at once.
Action Builder
In the move from the legacy JSON Wire Protocol to the new W3C WebDriver Protocol,
the low level building blocks of actions became especially detailed. It is extremely
powerful, but each input device has a number of ways to use it and if you need to
manage more than one device, you are responsible for ensuring proper synchronization between them.
Thankfully, you likely do not need to learn how to use the low level commands directly, since
almost everything you might want to do has been given a convenience method that combines the
lower level commands for you. These are all documented in
keyboard, mouse, pen, and wheel pages.
Pause
Pointer movements and Wheel scrolling allow the user to set a duration for the action, but sometimes you just need
to wait a beat between actions for things to work correctly.
An important thing to note is that the driver remembers the state of all the input
items throughout a session. Even if you create a new instance of an actions class, the depressed keys and
the location of the pointer will be in whatever state a previously performed action left them.
There is a special method to release all currently depressed keys and pointer buttons.
This method is implemented differently in each of the languages because
it does not get executed with the perform method.
A representation of any key input device for interacting with a web page.
There are only 2 actions that can be accomplished with a keyboard:
pressing down on a key, and releasing a pressed key.
In addition to supporting ASCII characters, each keyboard key has
a representation that can be pressed or released in designated sequences.
Keys
In addition to the keys represented by regular unicode,
unicode values have been assigned to other keyboard keys for use with Selenium.
Each language has its own way to reference these keys; the full list can be found
here.
This is a convenience method in the Actions API that combines keyDown and keyUp commands in one action.
Executing this command differs slightly from using the element method, but
primarily this gets used when needing to type multiple characters in the middle of other actions.
Here’s an example of using all of the above methods to conduct a copy / paste action.
Note that the key to use for this operation will be different depending on if it is a Mac OS or not.
This code will end up with the text: SeleniumSelenium!
A representation of any pointer device for interacting with a web page.
There are only 3 actions that can be accomplished with a mouse:
pressing down on a button, releasing a pressed button, and moving the mouse.
Selenium provides convenience methods that combine these actions in the most common ways.
Click and hold
This method combines moving the mouse to the center of an element with pressing the left mouse button.
This is useful for focusing a specific element:
There are a total of 5 defined buttons for a Mouse:
0 — Left Button (the default)
1 — Middle Button (currently unsupported)
2 — Right Button
3 — X1 (Back) Button
4 — X2 (Forward) Button
Context Click
This method combines moving to the center of an element with pressing and releasing the right mouse button (button 2).
This is otherwise known as “right-clicking”:
This method moves the mouse to the in-view center point of the element.
This is otherwise known as “hovering.”
Note that the element must be in the viewport or else the command will error.
These methods first move the mouse to the designated origin and then
by the number of pixels in the provided offset.
Note that the position of the mouse must be in the viewport or else the command will error.
Offset from Element
This method moves the mouse to the in-view center point of the element,
then moves by the provided offset.
This method moves the mouse from its current position by the offset provided by the user.
If the mouse has not previously been moved, the position will be in the upper left
corner of the viewport.
Note that the pointer position does not change when the page is scrolled.
Note that the first argument X specifies to move right when positive, while the second argument
Y specifies to move down when positive. So moveByOffset(30, -10) moves right 30 and up 10 from
the current mouse position.
A Pen is a type of pointer input that has most of the same behavior as a mouse, but can
also have event properties unique to a stylus. Additionally, while a mouse
has 5 buttons, a pen has 3 equivalent button states:
0 — Touch Contact (the default; equivalent to a left click)
2 — Barrel Button (equivalent to a right click)
5 — Eraser Button (currently unsupported by drivers)
This is the most common scenario. Unlike traditional click and send keys methods,
the actions class does not automatically scroll the target element into view,
so this method will need to be used if elements are not already inside the viewport.
This method takes a web element as the sole argument.
Regardless of whether the element is above or below the current viewscreen,
the viewport will be scrolled so the bottom of the element is at the bottom of the screen.
This is the second most common scenario for scrolling. Pass in an delta x and a delta y value for how much to scroll
in the right and down directions. Negative values represent left and up, respectively.
This scenario is effectively a combination of the above two methods.
To execute this use the “Scroll From” method, which takes 3 arguments.
The first represents the origination point, which we designate as the element,
and the second two are the delta x and delta y values.
If the element is out of the viewport,
it will be scrolled to the bottom of the screen, then the page will be scrolled by the provided
delta x and delta y values.
This scenario is used when you need to scroll only a portion of the screen, and it is outside the viewport.
Or is inside the viewport and the portion of the screen that must be scrolled
is a known offset away from a specific element.
This uses the “Scroll From” method again, and in addition to specifying the element,
an offset is specified to indicate the origin point of the scroll. The offset is
calculated from the center of the provided element.
If the element is out of the viewport,
it first will be scrolled to the bottom of the screen, then the origin of the scroll will be determined
by adding the offset to the coordinates of the center of the element, and finally
the page will be scrolled by the provided delta x and delta y values.
Note that if the offset from the center of the element falls outside of the viewport,
it will result in an exception.
Scroll from a offset of origin (element) by given amount
The final scenario is used when you need to scroll only a portion of the screen,
and it is already inside the viewport.
This uses the “Scroll From” method again, but the viewport is designated instead
of an element. An offset is specified from the upper left corner of the
current viewport. After the origin point is determined,
the page will be scrolled by the provided delta x and delta y values.
Note that if the offset from the upper left corner of the viewport falls outside of the screen,
it will result in an exception.
Selenium is working with browser vendors to create the
WebDriver BiDirectional Protocol
as a means to provide a stable, cross-browser API that uses the bidirectional
functionality useful for both browser automation generally and testing specifically.
Before now, users seeking this functionality have had to rely on CDP (Chrome DevTools Protocol)
with all of its frustrations and limitations.
The traditional WebDriver model of strict request/response commands will be supplemented
with the ability to stream events from the user agent to the controlling software via WebSockets,
better matching the evented nature of the browser DOM.
As it is not a good idea to tie your tests to a specific version of any browser, the
Selenium project recommends using WebDriver BiDi wherever possible.
While the specification is in works, the browser vendors are parallely implementing
the WebDriver BiDirectional Protocol.
Refer web-platform-tests dashboard
to see how far along the browser vendors are.
Selenium is trying to keep up with the browser vendors and has started implementing W3C BiDi APIs.
The goal is to ensure APIs are W3C compliant and uniform among the different language bindings.
However, until the specification and corresponding Selenium implementation is complete there are many useful things that
CDP offers. Selenium offers some useful helper classes that use CDP.
2.8.1 - Chrome DevTools
Many browsers provide “DevTools” – a set of tools that are integrated with the browser that
developers can use to debug web apps and explore the performance of their pages. Google Chrome’s
DevTools make use of a protocol called the Chrome DevTools Protocol (or “CDP” for short).
As the name suggests, this is not designed for testing, nor to have a stable API, so functionality
is highly dependent on the version of the browser.
The WebDriver BiDirectional Protocol is the next generation of the
W3C WebDriver protocol and aims to provide a stable API implemented by all browsers, but it’s not yet complete.
Until it is, Selenium provides access to
the CDP for those browsers that implement it (such as Google Chrome, or Microsoft Edge, and
Firefox), allowing you to enhance your tests in interesting ways. Some examples of what you can
do with it are given below.
Ways to Use Chrome DevTools With Selenium
There are three different ways to access Chrome DevTools in Selenium. If you look for other examples online,
you will likely see each of these mixed and matched.
The CDP Endpoint was the first option available to users.
It only works for the most simple things (setting state, getting basic information), and you
have to know the “magic strings” for the domain and methods and key value pairs.
For basic requirements, this might be simpler than the other options. These methods are only temporarily supported.
The CDP API is an improvement on just using the endpoint because you can set
do things asynchronously. Instead of a String and a Map, you can access the supported classes,
methods and parameters in the code. These methods are also only temporarily supported.
The BiDi API option should be used whenever possible because it
abstracts away the implementation details entirely and will work with either CDP or WebDriver-BiDi
when Selenium moves away from CDP.
Examples With Limited Value
There are a number of commonly cited examples for using CDP that are of limited practical value.
Geo Location — almost all sites use the IP address to determine physical location,
so setting an emulated geolocation rarely has the desired effect.
Overriding Device Metrics — Chrome provides a great API for setting Mobile Emulation
in the Options classes, which is generally superior to attempting to do this with CDP.
Check out the examples in these documents for ways to do additional useful things:
2.8.1.1 - Chrome DevTools Protocol Endpoint
Google provides a /cdp/execute endpoint that can be accessed directly. Each Selenium binding provides a method that allows you to pass the CDP domain as a String, and the required parameters as a simple Map.
These methods will eventually be removed. It is recommended to use the WebDriver-BiDi or WebDriver Bidi APIs
methods where possible to ensure future compatibility.
Usage
Generally you should prefer the use of the CDP API over this approach,
but sometimes the syntax is cleaner or significantly more simple.
Limitations include:
It only works for use cases that are limited to setting or getting information;
any actual asynchronous interactions require another implementation
You have to know the exactly correct “magic strings” for domains and keys
It is possible that an update to Chrome will change the required parameters
Each of the Selenium bindings dynamically generates classes and methods for the various CDP domains and features; these are tied to specific versions of Chrome.
While Selenium 4 provides direct access to the Chrome DevTools Protocol (CDP), these
methods will eventually be removed. It is recommended to use the WebDriver Bidi APIs
methods where possible to ensure future compatibility.
Usage
If your use case has been implemented by WebDriver Bidi or
the BiDi API, you should use those implementations instead of this one.
Generally you should prefer this approach over executing with the CDP Endpoint,
especially in Ruby.
Wait for a download to finish before continuing.
Because getting download status requires setting a listener, this cannot be done with a CDP Endpoint implementation.
These examples are currently implemented with CDP, but the same code should work when the functionality is re-implemented with WebDriver-BiDi.
Usage
The following list of APIs will be growing as the Selenium
project works through supporting real world use cases. If there
is additional functionality you’d like to see, please raise a
feature request.
As these examples are re-implemented with the WebDriver-Bidi protocol, they will
be moved to the WebDriver Bidi pages.
Examples
Basic authentication
Some applications make use of browser authentication to secure pages.
It used to be common to handle them in the URL, but browser stopped supporting this.
With BiDi, you can now provide the credentials when necessary
This can be especially useful when executing on a remote server. For example,
whenever you check the visibility of an element, or whenever you use
the classic get attribute method, Selenium is sending the contents of a js file
to the script execution endpoint. These files are each about 50kB, which adds up.
The following list of APIs will be growing as the WebDriver BiDirectional Protocol grows
and browser vendors implement the same.
Additionally, Selenium will try to support real-world use cases that internally use a combination of W3C BiDi protocol APIs.
If there is additional functionality you’d like to see, please raise a
feature request.
2.8.2.1 - Browsing Context
This section contains the APIs related to browsing context commands.
A reference browsing context is a top-level browsing context.
The API allows to pass the reference browsing context, which is used to create a new window. The implementation is operating system specific.
A reference browsing context is a top-level browsing context.
The API allows to pass the reference browsing context, which is used to create a new tab. The implementation is operating system specific.
Provides a tree of all browsing contexts descending from the parent browsing context, including the parent browsing context upto the depth value passed.
Listen to the JS Exceptions
and register callbacks to process the exception details.
logInspector.onJavaScriptLog(future::complete);driver.get("https://www.selenium.dev/selenium/web/bidi/logEntryAdded.html");driver.findElement(By.id("jsException")).click();JavascriptLogEntrylogEntry=future.get(5,TimeUnit.SECONDS);Assertions.assertEquals("Error: Not working",logEntry.getText());
constinspector=awaitLogInspector(driver)awaitinspector.onJavascriptException(function(log){logEntry=log})awaitdriver.get('https://www.selenium.dev/selenium/web/bidi/logEntryAdded.html')awaitdriver.findElement({id:'jsException'}).click()assert.equal(logEntry.text,'Error: Not working')assert.equal(logEntry.type,'javascript')assert.equal(logEntry.level,'error')
Support classes provide optional higher level features.
The core libraries of Selenium try to be low level and non-opinionated.
The Support classes in each language provide opinionated wrappers for common interactions
that may be used to simplify some behaviors.
2.9.1 - Waiting with Expected Conditions
These are classes used to describe what needs to be waited for.
Expected Conditions are used with Explicit Waits.
Instead of defining the block of code to be executed with a lambda, an expected
conditions method can be created to represent common things that get waited on. Some
methods take locators as arguments, others take elements as arguments.
You will occasionally want to validate the colour of something as part of your tests;
the problem is that colour definitions on the web are not constant.
Would it not be nice if there was an easy way to compare
a HEX representation of a colour with a RGB representation of a colour,
or a RGBA representation of a colour with a HSLA representation of a colour?
You can now start creating colour objects.
Every colour object will need to be created from a string representation of
your colour.
Supported colour representations are:
You can now safely query an element
to get its colour/background colour knowing that
any response will be correctly parsed
and converted into a valid Color object:
Select lists have special behaviors compared to other elements.
The Select object will now give you a series of commands
that allow you to interact with a <select> element.
If you are using Java or .NET make sure that you’ve properly required the support package
in your code. See the full code from GitHub in any of the examples below.
Note that this class only works for HTML elements select and option.
It is possible to design drop-downs with JavaScript overlays using div or li,
and this class will not work for those.
Types
Select methods may behave differently depending on which type of <select> element is being worked with.
Single select
This is the standard drop-down object where one and only one option may be selected.
<selectname="selectomatic"><optionselected="selected"id="non_multi_option"value="one">One</option><optionvalue="two">Two</option><optionvalue="four">Four</option><optionvalue="still learning how to count, apparently">Still learning how to count, apparently</option></select>
Multiple select
This select list allows selecting and deselecting more than one option at a time.
This only applies to <select> elements with the multiple attribute.
First locate a <select> element, then use it to initialize a Select object.
Note that as of Selenium 4.5, you can’t create a Select object if the <select> element is disabled.
Get a list of selected options in the <select> element. For a standard select list
this will only be a list with one element, for a multiple select list it can contain
zero or many elements.
The Select class provides three ways to select an option.
Note that for multiple select type Select lists, you can repeat these methods
for each element you want to select.
ThreadGuard checks that a driver is called only from the same thread that created it.
Threading issues especially when running tests in Parallel may have mysterious
and hard to diagnose errors. Using this wrapper prevents this category of errors
and will raise an exception when it happens.
The following example simulate a clash of threads:
publicclassDriverClash{//thread main (id 1) created this driver
privateWebDriverprotectedDriver=ThreadGuard.protect(newChromeDriver());static{System.setProperty("webdriver.chrome.driver","<Set path to your Chromedriver>");}//Thread-1 (id 24) is calling the same driver causing the clash to happen
Runnabler1=()->{protectedDriver.get("https://selenium.dev");};Threadthr1=newThread(r1);voidrunThreads(){thr1.start();}publicstaticvoidmain(String[]args){newDriverClash().runThreads();}}
The result shown below:
Exception in thread "Thread-1" org.openqa.selenium.WebDriverException:
Thread safety error; this instance of WebDriver was constructed
on thread main (id 1)and is being accessed by thread Thread-1 (id 24)
This is not permitted and *will* cause undefined behaviour
As seen in the example:
protectedDriver Will be created in Main thread
We use Java Runnable to spin up a new process and a new Thread to run the process
Both Thread will clash because the Main Thread does not have protectedDriver in it’s memory.
ThreadGuard.protect will throw an exception.
Note:
This does not replace the need for using ThreadLocal to manage drivers when running parallel.
2.10 - Troubleshooting Assistance
How to get manage WebDriver problems.
It is not always obvious the root cause of errors in Selenium.
The most common Selenium-related error is a result of poor synchronization.
Read about Waiting Strategies. If you aren’t sure if it
is a synchronization strategy you can try temporarily hard coding a large sleep
where you see the issue, and you’ll know if adding an explicit wait can help.
Note that many errors that get reported to the project are actually caused by
issues in the underlying drivers that Selenium sends the commands to. You can rule
out a driver problem by executing the command in multiple browsers.
If you have questions about how to do things, check out the Support options
for ways get assistance.
If you think you’ve found a problem with Selenium code, go ahead and file a
Bug Report
on GitHub.
2.10.1 - Understanding Common Errors
How to get deal with various problems in your Selenium code.
Invalid Selector Exception
CSS and XPath Selectors are sometimes difficult to get correct.
Likely Cause
The CSS or XPath selector you are trying to use has invalid characters or an invalid query.
An element goes stale when it was previously located, but can not be currently accessed.
Elements do not get relocated automatically; the driver creates a reference ID for the element and
has a particular place it expects to find it in the DOM. If it can not find the element
in the current DOM, any action using that element will result in this exception.
Common Causes
This can happen when:
You have refreshed the page, or the DOM of the page has dynamically changed.
You have navigated to a different page.
You have switched to another window or into or out of a frame or iframe.
Common Solutions
The DOM has changed
When the page is refreshed or items on the page have moved around, there is still
an element with the desired locator on the page, it is just no longer accessible
by the element object being used, and the element must be relocated before it can be used again.
This is often done in one of two ways:
Always relocate the element every time you go to use it. The likelihood of
the element going stale in the microseconds between locating and using the element
is small, though possible. The downside is that this is not the most efficient approach,
especially when running on a remote grid.
Wrap the Web Element with another object that stores the locator, and caches the
located Selenium element. When taking actions with this wrapped object, you can
attempt to use the cached object if previously located, and if it is stale, exception
can be caught, the element relocated with the stored locator, and the method re-tried.
This is more efficient, but it can cause problems if the locator you’re using
references a different element (and not the one you want) after the page has changed.
The Context has changed
Element objects are stored for a given context, so if you move to a different context —
like a different window or a different frame or iframe — the element reference will
still be valid, but will be temporarily inaccessible. In this scenario, it won’t
help to relocate the element, because it doesn’t exist in the current context.
To fix this, you need to make sure to switch back to the correct context before using the element.
The Page has changed
This scenario is when you haven’t just changed contexts, you have navigated to another page
and have destroyed the context in which the element was located.
You can’t just relocate it from the current context,
and you can’t switch back to an active context where it is valid. If this is the reason
for your error, you must both navigate back to the correct location and relocate it.
2.10.1.1 - Unable to Locate Driver Error
Troubleshooting missing path to driver executable.
Historically, this is the most common error beginning Selenium users get
when trying to run code for the first time:
The path to the driver executable must
be set by the webdriver.chrome.driver system property;
for more information, see https://chromedriver.chromium.org/.
The latest version can be downloaded from https://chromedriver.chromium.org/downloads
The executable chromedriver needs to be available in the path.
The file geckodriver does not exist. The driver can be downloaded at https://github.com/mozilla/geckodriver/releases"
Unable to locate the chromedriver executable;
Likely cause
Through WebDriver, Selenium supports all major browsers.
In order to drive the requested browser, Selenium needs to
send commands to it via an executable driver.
This error means the necessary driver could not be
found by any of the means Selenium attempts to use.
Possible solutions
There are several ways to ensure Selenium gets the driver it needs.
Use the latest version of Selenium
As of Selenium 4.6, Selenium downloads the correct driver for you.
You shouldn’t need to do anything. If you are using the latest version
of Selenium and you are getting an error,
please turn on logging
and file a bug report with that information.
If you want to read more information about how Selenium manages driver downloads for you,
you can read about the Selenium Manager.
This is a flexible option to change location of drivers without having to update your code,
and will work on multiple machines without requiring that each machine put the
drivers in the same place.
You can either place the drivers in a directory that is already listed in PATH,
or you can place them in a directory and add it to PATH.
To see what directories are already on PATH, open a Terminal and execute:
echo$PATH
If the location to your driver is not already in a directory listed,
you can add a new directory to PATH:
You can test if it has been added correctly by checking the version of the driver:
chromedriver --version
To see what directories are already on PATH, open a Command Prompt and execute:
echo %PATH%
If the location to your driver is not already in a directory listed,
you can add a new directory to PATH:
setx PATH "%PATH%;C:\WebDriver\bin"
You can test if it has been added correctly by checking the version of the driver:
chromedriver.exe --version
Specify the location of the driver
If you cannot upgrade to the latest version of Selenium, you
do not want Selenium to download drivers for you, and you can’t figure
out the environment variables, you can specify the location of the driver in the Service object.
Specifying the location in the code itself has the advantage of not needing
to figure out Environment Variables on your system, but has the drawback of
making the code less flexible.
Driver management libraries
Before Selenium managed drivers itself, other projects were created to
do so for you.
If you can’t use Selenium Manager because you are using
an older version of Selenium (please upgrade),
or need an advanced feature not yet implemented by Selenium Manager,
you might try one of these tools to keep your drivers automatically updated:
Note: The Opera driver no longer works with the latest functionality of Selenium and is currently officially unsupported.
2.10.2 - Logging Selenium commands
Getting information about Selenium execution.
Turning on logging is a valuable way to get extra information that might help you determine
why you might be having a problem.
Getting a logger
Java logs are typically created per class. You can work with the default logger to
work with all loggers. To filter out specific classes, see Filtering
Java Logging is not exactly straightforward, and if you are just looking for an easy way
to look at the important Selenium logs,
take a look at the Selenium Logger project
Python logs are typically created per module. You can match all submodules by referencing the top
level module. So to work with all loggers in selenium module, you can do this:
.NET does not currently have a Logging implementation
If you want to see as much debugging as possible in all the classes,
you can turn on debugging globally in Ruby by setting $DEBUG = true.
For more fine-tuned control, Ruby Selenium created its own Logger class to wrap the default Logger class.
This implementation provides some interesting additional features.
Obtain the logger directly from the #loggerclass method on the Selenium::WebDriver module:
Things get complicated when you use PyTest, though. By default, PyTest hides logging unless the test
fails. You need to set 3 things to get PyTest to display logs on passing tests.
To always output logs with PyTest you need to run with additional arguments.
First, -s to prevent PyTest from capturing the console.
Second, -p no:logging, which allows you to override the default PyTest logging settings so logs can
be displayed regardless of errors.
So you need to set these flags in your IDE, or run PyTest on command line like:
pytest -s -p no:logging
Finally, since you turned off logging in the arguments above, you now need to add configuration to
turn it back on:
logging.basicConfig(level=logging.WARN)
.NET does not currently have a Logging implementation
Ruby logger has 5 logger levels: :debug, :info, :warn, :error, :fatal.
The default is :info.
Things are logged as warnings if they are something the user needs to take action on. This is often used
for deprecations. For various reasons, Selenium project does not follow standard Semantic Versioning practices.
Our policy is to mark things as deprecated for 3 releases and then remove them, so deprecations
may be logged as warnings.
Java logs actionable content at logger level WARN
Example:
May 08, 2023 9:23:38 PM dev.selenium.troubleshooting.LoggingTest logging
WARNING: this is a warning
Python logs actionable content at logger level — WARNING
Details about deprecations are logged at this level.
Example:
WARNING selenium:test_logging.py:23 this is a warning
.NET does not currently have a Logging implementation
Ruby logs actionable content at logger level — :warn.
Details about deprecations are logged at this level.
For example:
2023-05-08 20:53:13 WARN Selenium [:example_id] this is a warning
Because these items can get annoying, we’ve provided an easy way to turn them off, see filtering section below.
Content Help
Note:
This section needs additional and/or updated content
This is the default level where Selenium logs things that users should be aware of but do not need to take actions on.
This might reference a new method or direct users to more information about something
Java logs useful information at logger level INFO
Example:
May 08, 2023 9:23:38 PM dev.selenium.troubleshooting.LoggingTest logging
INFO: this is useful information
Python logs useful information at logger level — INFO
Example:
INFO selenium:test_logging.py:22 this is useful information
.NET does not currently have a Logging implementation
Ruby logs useful information at logger level — :info.
Example:
2023-05-08 20:53:13 INFO Selenium [:example_id] this is useful information
Logs useful information at level: INFO
Content Help
Note:
This section needs additional and/or updated content
Java logging is managed on a per class level, so
instead of using the root logger (Logger.getLogger("")), set the level you want to use on a per-class
basis:
.NET does not currently have a Logging implementation
Ruby’s logger allows you to opt in (“allow”) or opt out (“ignore”) of log messages based on their IDs.
Everything that Selenium logs includes an ID. You can also turn on or off all deprecation notices by
using :deprecations.
These methods accept one or more symbols or an array of symbols:
Are you still using Selenium 3? This guide will help you upgrade to the latest release!
Upgrading to Selenium 4 should be a painless process if you are using one of the officially
supported languages (Ruby, JavaScript, C#, Python, and Java). There might be some cases where
a few issues can happen, and this guide will help you to sort them out. We will go through
the steps to upgrade your project dependencies and understand the major deprecations and
changes the version upgrade brings.
These are the steps we will follow to upgrade to Selenium 4:
Preparing our test code
Upgrading dependencies
Potential errors and deprecation messages
Note: while Selenium 3.x versions were being developed, support for the W3C WebDriver standard
was implemented. Both this new protocol and the legacy JSON Wire Protocol were supported. Around
version 3.11, Selenium code became compliant with the level W3C 1 specification. The W3C compliant
code in the latest version of Selenium 3 will work as expected in Selenium 4.
Preparing our test code
Selenium 4 removes support for the legacy protocol and uses the W3C WebDriver standard by
default under the hood. For most things, this implementation will not affect end users.
The major exceptions are Capabilities and the Actions class.
Capabilities
If the test capabilities are not structured to be W3C compliant, may cause a session to not
be started. Here is the list of W3C WebDriver standard capabilities:
browserName
browserVersion (replaces version)
platformName (replaces platform)
acceptInsecureCerts
pageLoadStrategy
proxy
timeouts
unhandledPromptBehavior
An up-to-date list of standard capabilities can be found at
W3C WebDriver.
Any capability that is not contained in the list above, needs to include a vendor prefix.
This applies to browser specific capabilities as well as cloud vendor specific capabilities.
For example, if your cloud vendor uses build and name capabilities for your tests, you need
to wrap them in a cloud:options block (check with your cloud vendor for the appropriate prefix).
The utility methods to find elements in the Java bindings (FindsBy interfaces) have been removed
as they were meant for internal use only. The following code samples explain this better.
Check the subsections below to install Selenium 4 and have your project dependencies upgraded.
Java
The process of upgrading Selenium depends on which build tool is being used. We will cover the
most common ones for Java, which are Maven and
Gradle. The minimum Java version required is still 8.
Maven
Before
<dependencies><!-- more dependencies ... --><dependency><groupId>org.seleniumhq.selenium</groupId><artifactId>selenium-java</artifactId><version>3.141.59</version></dependency><!-- more dependencies ... --></dependencies>
After
<dependencies><!-- more dependencies ... --><dependency><groupId>org.seleniumhq.selenium</groupId><artifactId>selenium-java</artifactId><version>4.4.0</version></dependency><!-- more dependencies ... --></dependencies>
After making the change, you could execute mvn clean compile on the same directory where the
pom.xml file is.
Gradle
Before
plugins {
id 'java'
}
group 'org.example'
version '1.0-SNAPSHOT'
repositories {
mavenCentral()
}
dependencies {
testImplementation 'org.junit.jupiter:junit-jupiter-api:5.7.0'
testRuntimeOnly 'org.junit.jupiter:junit-jupiter-engine:5.7.0'
implementation group: 'org.seleniumhq.selenium', name: 'selenium-java', version: '3.141.59'
}
test {
useJUnitPlatform()
}
After
plugins {
id 'java'
}
group 'org.example'
version '1.0-SNAPSHOT'
repositories {
mavenCentral()
}
dependencies {
testImplementation 'org.junit.jupiter:junit-jupiter-api:5.7.0'
testRuntimeOnly 'org.junit.jupiter:junit-jupiter-engine:5.7.0'
implementation group: 'org.seleniumhq.selenium', name: 'selenium-java', version: '4.4.0'
}
test {
useJUnitPlatform()
}
After making the change, you could execute ./gradlew clean build
on the same directory where the build.gradle file is.
To check all the Java releases, you can head to MVNRepository.
C#
The place to get updates for Selenium 4 in C# is NuGet. Under the
Selenium.WebDriver package you
can get the instructions to update to the latest version. Inside of Visual Studio, through the
NuGet Package Manager you can execute:
The most important change to use Python is the minimum required version. Selenium 4 will
require a minimum Python 3.7 or higher. More details can be found at the
Python Package Index. To upgrade from the
command line, you can execute:
pip install selenium==4.4.3
Ruby
The update details for Selenium 4 can be seen at the
selenium-webdriver
gem in RubyGems. To install the latest version, you can execute:
gem install selenium-webdriver
To add it to your Gemfile:
gem 'selenium-webdriver', '~> 4.4.0'
JavaScript
The selenium-webdriver package can be found at the Node package manager,
npmjs. Selenium 4 can be found
here. To install it, you
could either execute:
Waits are also expecting different parameters now. WebDriverWait is now expecting a Duration
instead of a long for timeout in seconds and milliseconds. The withTimeout and pollingEvery
utility methods from FluentWait have switched from expecting (long time, TimeUnit unit) to
expect (Duration duration).
Merging capabilities is no longer changing the calling object
It was possible to merge a different set of capabilities into another set, and it was
mutating the calling object. Now, the result of the merge operation needs to be assigned.
Before
MutableCapabilitiescapabilities=newMutableCapabilities();capabilities.setCapability("platformVersion","Windows 10");FirefoxOptionsoptions=newFirefoxOptions();options.setHeadless(true);options.merge(capabilities);// As a result, the `options` object was getting modified.
After
MutableCapabilitiescapabilities=newMutableCapabilities();capabilities.setCapability("platformVersion","Windows 10");FirefoxOptionsoptions=newFirefoxOptions();options.setHeadless(true);options=options.merge(capabilities);// The result of the `merge` call needs to be assigned to an object.
Firefox Legacy
Before GeckoDriver was around, the Selenium project had a driver implementation to automate
Firefox (version <48). However, this implementation is not needed anymore as it does not work
in recent versions of Firefox. To avoid major issues when upgrading to Selenium 4, the setLegacy
option will be shown as deprecated. The recommendation is to stop using the old implementation
and rely only on GeckoDriver. The following code will show the setLegacy line deprecated after
upgrading.
Instead of it, AddAdditionalOption is recommended. Here is an example showing this:
Before
var browserOptions = new ChromeOptions();
browserOptions.PlatformName = "Windows 10";
browserOptions.BrowserVersion = "latest";
var cloudOptions = new Dictionary<string, object>();
browserOptions.AddAdditionalCapability("cloud:options", cloudOptions, true);
After
var browserOptions = new ChromeOptions();
browserOptions.PlatformName = "Windows 10";
browserOptions.BrowserVersion = "latest";
var cloudOptions = new Dictionary<string, object>();
browserOptions.AddAdditionalOption("cloud:options", cloudOptions);
Python
executable_path has been deprecated, please pass in a Service object
In Selenium 4, you’ll need to set the driver’s executable_path from a Service object to prevent deprecation warnings. (Or don’t set the path and instead make sure that the driver you need is on the System PATH.)
We went through the major changes to be taken into consideration when upgrading to Selenium 4.
Covering the different aspects to cover when test code is prepared for the upgrade, including
suggestions on how to prevent potential issues that can show up when using the new version of
Selenium. To finalize, we also covered a set of possible issues that you can bump into after
upgrading, and we shared potential fixes for those issues.
To learn more about the different configuration options, go through the sections below.
Grid roles
Grid is composed by six different components, which gives
you the option to deploy it in different ways.
Depending on your needs, you can start each one of them on its own (Distributed), group
them in Hub & Node, or all in one on a single machine (Standalone).
Standalone
Standalone combines all Grid components seamlessly
into one. Running a Grid in Standalone mode gives you a fully functional Grid
with a single command, within a single process. Standalone can only run on a
single machine.
Standalone is also the easiest mode to spin up a Selenium Grid. By default, the server
will listen for RemoteWebDriver requests on http://localhost:4444.
By default, the server will detect the available drivers that it can use from the System
PATH.
Hub and Nodes talk to each other via HTTP and the Event Bus
(the Event Bus lives inside the Hub). A Node sends a message to the Hub via the Event Bus to
start the registration process. When the Hub receives the message, reaches out to the Node via HTTP to
confirm its existence.
To successfully register a Node to a Hub, it is important to expose the Event Bus ports (4442 and 4443 by
default) on the Hub machine. This also applies for the Node port. With that, both Hub and Node will
be able to communicate.
If the Hub is using the default ports, the --hub flag can be used to register the Node
Distributor: queries the New Session Queue for new session requests, and assigns them to a Node when the capabilities match. Nodes register to the Distributor the way they register to the Hub in a Hub/Node Grid.
Default Distributor port is 5553. Distributor interacts with New Session Queue, Session Map, Event Bus, and the Node(s).
Add metadata to your tests and consume it via GraphQL
or visualize parts of it (like se:name) through the Selenium Grid UI.
Metadata can be added by prefixing a capability with se:. Here is a quick example in Java showing that.
ChromeOptionschromeOptions=newChromeOptions();chromeOptions.setCapability("browserVersion","100");chromeOptions.setCapability("platformName","Windows");// Showing a test name instead of the session id in the Grid UI
chromeOptions.setCapability("se:name","My simple test");// Other type of metadata can be seen in the Grid UI by clicking on the
// session info or via GraphQL
chromeOptions.setCapability("se:sampleMetadata","Sample metadata value");WebDriverdriver=newRemoteWebDriver(newURL("http://gridUrl:4444"),chromeOptions);driver.get("http://www.google.com");driver.quit();
Querying Selenium Grid
After starting a Grid, there are mainly two ways of querying its status, through the Grid
UI or via an API call.
The Grid UI can be reached by opening your preferred browser and heading to
http://localhost:4444.
For simplicity, all command examples shown in this page assume that components are running
locally. More detailed examples and usages can be found in the
Configuring Components section.
Using the Java 11 HTTP Client
By default, Grid will use AsyncHttpClient.
AsyncHttpClient is an open-source library built on top of Netty. It allows the execution of HTTP
requests and responses asynchronously. Additionally it also provides WebSocket support. Hence it
is a good fit.
However, AsyncHttpClient is not been actively maintained since June 2021. It coincides with the
fact that Java 11+ provides a built-in HTTP and WebSocket client. Currently, Selenium
has plans to upgrade the minimum version supported to Java 11. However, it is a sizeable effort.
Aligning it with major releases and accompanied announcements is crucial to ensure the user
experience is intact.
To do use the Java 11 client, you will need to download the selenium-http-jdk-client jar file
and use the --ext flag to make it available in the Grid jar’s classpath.
The jar file can be downloaded directly from repo1.maven.org
and then start the Grid in the following way:
If you are using the Hub/Node(s) mode or the Distributed mode, setting the -Dwebdriver.http.factory=jdk-http-client
and --ext flags needs to be done for each one of the components.
Grid sizes
Choosing a Grid role depends on what operating systems and browsers need to be supported,
how many parallel sessions need to be executed, the amount of available machines, and how
powerful (CPU, RAM) those machines are.
Creating sessions concurrently relies on the available processors to the Distributor.
For example, if a machine has 4 CPUs, the Distributor will only be able to create up
to 4 sessions concurrently.
By default, the maximum amount of concurrent sessions a Node supports is limited by
the number of CPUs available. For example, if the Node machine has 8CPUs, it can run
up to 8 concurrent browser sessions (with the exception of Safari, which is always one).
Additionally, it is expected that each browser session should use around 1GB RAM.
In general, it is a recommended to have Nodes as small as possible. Instead of having
a machine with 32CPUs and 32GB RAM to run 32 concurrent browser sessions, it is better to
have 32 small Nodes in order to better isolate processes. With this, if a Node
fails, it will do it in an isolated way. Docker is a good tool to achieve this approach.
Note that the default values (1CPU/1GB RAM per browser) are a recommendation and they could
not apply to your context. It is recommended to use them as a reference, but measuring
performance continuously will help to determine the ideal values for your environment.
Grid sizes are relative to the amount of supported concurrent sessions and amount of
Nodes, and there is no “one size fits all”. Sizes mentioned below are rough estimations
thay can vary between different environments. For example a Hub/Node with 120 Nodes
might work well when the Hub has enough resources. Values below are not set on stone,
and feedback is welcomed!
Small
Standalone or Hub/Node with 5 or less Nodes.
Middle
Hub/Node between 6 and 60 Nodes.
Large
Hub/Node between 60 and 100 Nodes. Distributed with over 100 Nodes.
Warning
Selenium Grid must be protected from external access using appropriate
firewall permissions.
Failure to protect your Grid could result in one or more of the following occurring:
You provide open access to your Grid infrastructure
You allow third parties to access internal web applications and files
Advanced Features: explore more possibilities through Grid’s features.
3.2 - When to Use Grid
Is Grid right for you?
When would you use a Selenium Grid?
To run your tests in parallel, against different browser types, browser versions, operating systems
To reduce the time needed to execute a test suite
Selenium Grid runs test suites in parallel against multiple machines (called Nodes).
For large and long-running test suites, this can save minutes, hours, or perhaps days.
This shortens the turnaround time for test results as your application under test (AUT)
changes.
Grid can run tests (in parallel) against multiple different browsers, and it can
run against multiple instances of the same browser. As an example, let’s imagine
a Grid with six Nodes. The first machine has Firefox’s latest version,
the second has Firefox “latest minus one”, the third gets the latest Chrome, and
the remaining three machines are Mac Minis, which allows for three tests to run in
parallel on the latest version of Safari.
Execution time can be expressed as a simple formula:
Number of Tests * Average Test Time / Number of Nodes = Total Execution Time
15 * 45s / 1 = 11m 15s // Without Grid
15 * 45s / 5 = 2m 15s // Grid with 5 Nodes
15 * 45s / 15 = 45s // Grid with 15 Nodes
100 * 120s / 15 = 13m 20s // Would take over 3 hours without Grid
As the test suite is executing, the Grid allocates the tests to run against these
browsers as configured in the tests.
A configuration such as this can greatly speed up the execution time of even the largest Selenium test suites.
Selenium Grid is a completely native part of the Selenium project, and is maintained in parallel by the same team
of committers who work in the core Selenium development. Recognizing the importance of test execution speed, Grid
has been a critical part of the Selenium project since the earliest days.
3.3 - Selenium Grid Components
Understand how to use the different Grid components
Selenium Grid 4 is a ground-up rewrite from previous versions. In addition to a comprehensive
set of improvements to performance and standards compliance, the different functions of the grid were
broken out to reflect a more modern age of computing and software development. Purpose-build for containerization
and cloud-distributed scalability, Selenium Grid 4 is a wholly new solution for the modern era.
Router
The Router is the entry point of the Grid, receiving all external requests, and forwards them to
the correct component.
If the Router receives a new session request, it will be forwarded to the New Session Queue.
If the request belongs to an existing session, the Router will query the Session Map to get
the Node ID where the session is running, and then the request will be forwarded directly to the
Node.
The Router balances the load in the Grid by sending the requests to the component that is able
to handle them better, without overloading any component that is not needed in the process.
Distributor
The Distributor has two main responsibilities:
Register and keep track of all Nodes and their capabilities
A Node registers to the Distributor by sending a Node registration event through
the Event Bus. The Distributor reads it, and then tries to reach the Node via HTTP
to confirm its existence. If the request is successful, the Distributor registers the Node
and keeps track of all Nodes capabilities through the GridModel.
Query the New Session Queue and process any pending new session requests
When a new session request is sent to the Router, it gets forwarded to the New Session Queue,
where it will wait in the queue. The Distributor will poll the New Session Queue for pending
new session requests, and then finds a suitable Node where the session can be created. After the
session has been created, the Distributor stores in the Session Map the relation between the
session id and Node where the session is being executed.
Session Map
The Session Map is a data store that keeps the relationship between the session id and the Node
where the session is running. It supports the Router in the process of forwarding a request to the
Node. The Router will ask the Session Map for the Node associated to a session id.
New Session Queue
The New Session Queue holds all the new session requests in a FIFO order. It has configurable
parameters for setting the request timeout and request retry interval (how often the timeout will
be checked).
The Router adds the new session request to the New Session Queue and waits for the response.
The New Session Queue regularly checks if any request in the queue has timed out, if so the request
is rejected and removed immediately.
The Distributor regularly checks if a slot is available. If so, the Distributor polls the
New Session Queue for the first matching request. The Distributor then attempts to create
a new session.
Once the requested capabilities match the capabilities of any of the free Node slots, the Distributor
attempts to get the available slot. If all the slots are busy, the Distributor will send the request back
to the queue. If request times out while retrying or adding to the front of the queue, it will be rejected.
After a session is created successfully, the Distributor sends the session information to the New Session Queue,
which then gets sent back to the Router, and finally to the client.
Node
A Grid can contain multiple Nodes. Each Node manages the slots for the available browsers of the machine
where it is running.
The Node registers itself to the Distributor through the Event Bus, and its configuration is sent as
part of the registration message.
By default, the Node auto-registers all browser drivers available on the path of the machine where it runs.
It also creates one slot per available CPU for Chromium based browsers and Firefox. For Safari, only one slot is
created. Through a specific configuration, it can run sessions in Docker
containers or relay commands.
A Node only executes the received commands, it does not evaluate, make judgments, or control anything other
than the flow of commands and responses. The machines where the Node is running does not need to have the
same operating system as the other components. For example, A Windows Node might have the capability of
offering IE Mode on Edge as a browser option, whereas this would not be possible on Linux or Mac, and a Grid can
have multiple Nodes configured with Windows, Mac, or Linux.
Event Bus
The Event Bus serves as a communication path between the Nodes, Distributor, New Session Queue,
and Session Map. The Grid does most of its internal communication through messages, avoiding expensive HTTP
calls. When starting the Grid in its fully distributed mode, the Event Bus is the first component that
should be started.
Running your own Grid
Looking forward to using all these components and run your own Grid?
Head to the “Getting Started”
section to understand how to put all these pieces together.
3.4 - Configuration of Components
Here you can see how each Grid component can be configured individually based on common configuration values and component-specific configuration values.
3.4.1 - Configuration help
Get information about all the available options to configure Grid.
The help commands display information based on the current code implementation.
Hence, it will provide accurate information in case the documentation is not updated.
It is the easiest way to learn about Grid 4 configuration for any new version.
Info Command
The info command provides detailed docs on the following topics:
Configuring Selenium
Security
Session Map setup
Tracing
Config help
Quick config help and overview is provided by running:
java -jar selenium-server-<version>.jar info config
Security
To get details on setting up the Grid servers for secure communication and node registration:
java -jar selenium-server-<version>.jar info security
Session Map setup
By default, Grid uses a local session map to store session information.
Grid supports additional storage options like Redis and JDBC - SQL supported databases.
To set up different session storage, use the following command to get setup steps:
java -jar selenium-server-<version>.jar info sessionmap
Setting up tracing with OpenTelemetry and Jaeger
By default, tracing is enabled. To export traces and visualize them via Jaeger, use the following command for instructions:
java -jar selenium-server-<version>.jar info tracing
All Grid components configuration CLI options in detail.
Different sections are available to configure a Grid. Each section has options can be configured
through command line arguments.
A complete description of the component to section mapping can be seen below.
Note that this documentation could be outdated if an option was modified or added
but has not been documented yet. In case you bump into this situation, please check
the “Config help” section and feel free to send us a
pull request updating this page.
Full class name of non-default distributor implementation
--distributor-port
int
5553
Port on which the distributor is listening.
--reject-unsupported-caps
boolean
false
Allow the Distributor to reject a request immediately if the Grid does not support the requested capability. Rejecting requests immediately is suitable for a Grid setup that does not spin up Nodes on demand.
--slot-matcher
string
org.openqa.selenium.grid.data.DefaultSlotMatcher
Full class name of non-default slot matcher to use. This is used to determine whether a Node can support a particular session.
Docker configs which map image name to stereotype capabilities (example `-D selenium/standalone-firefox:latest ‘{“browserName”: “firefox”}’)
--docker-devices
string[]
/dev/kvm:/dev/kvm
Exposes devices to a container. Each device mapping declaration must have at least the path of the device in both host and container separated by a colon like in this example: /device/path/in/host:/device/path/in/container
--docker-host
string
localhost
Host name where the Docker daemon is running
--docker-port
int
2375
Port where the Docker daemon is running
--docker-url
string
http://localhost:2375
URL for connecting to the Docker daemon
--docker-video-image
string
selenium/video:latest
Docker image to be used when video recording is enabled
Events
Option
Type
Value/Example
Description
--bind-bus
boolean
false
Whether the connection string should be bound or connected. When true, the component will be bound to the Event Bus (as in the Event Bus will also be started by the component, typically by the Distributor and the Hub). When false, the component will connect to the Event Bus.
--events-implementation
string
org.openqa.selenium.events.zeromq.ZeroMqEventBus
Full class name of non-default event bus implementation
--publish-events
string
tcp://*:4442
Connection string for publishing events to the event bus
--subscribe-events
string
tcp://*:4443
Connection string for subscribing to events from the event bus
Logging
Option
Type
Value/Example
Description
--http-logs
boolean
false
Enable http logging. Tracing should be enabled to log http logs.
--log-encoding
string
UTF-8
Log encoding
--log
string
Windows path example : '\path\to\file\gridlog.log' or 'C:\path\path\to\file\gridlog.log'
Linux/Unix/MacOS path example : '/path/to/file/gridlog.log'
File to write out logs. Ensure the file path is compatible with the operating system’s file path.
Full classname of non-default Node implementation. This is used to manage a session’s lifecycle.
--grid-url
string
https://grid.example.com
Public URL of the Grid as a whole (typically the address of the Hub or the Router)
--heartbeat-period
int
60
How often, in seconds, will the Node send heartbeat events to the Distributor to inform it that the Node is up.
--max-sessions
int
8
Maximum number of concurrent sessions. Default value is the number of available processors.
--override-max-sessions
boolean
false
The # of available processors is the recommended max sessions value (1 browser session per processor). Setting this flag to true allows the recommended max value to be overwritten. Session stability and reliability might suffer as the host could run out of resources.
--register-cycle
int
10
How often, in seconds, the Node will try to register itself for the first time to the Distributor.
--register-period
int
120
How long, in seconds, will the Node try to register to the Distributor for the first time. After this period is completed, the Node will not attempt to register again.
--session-timeout
int
300
Let X be the session-timeout in seconds. The Node will automatically kill a session that has not had any activity in the last X seconds. This will release the slot for other tests.
--vnc-env-var
string
START_XVFB
Environment variable to check in order to determine if a vnc stream is available or not.
--no-vnc-port
int
7900
If VNC is available, sets the port where the local noVNC stream can be obtained
--drain-after-session-count
int
1
Drain and shutdown the Node after X sessions have been executed. Useful for environments like Kubernetes. A value higher than zero enables this feature.
--hub
string
http://localhost:4444
The address of the Hub in a Hub-and-Node configuration. Can be a hostname or IP address (hostname), in which case the Hub will be assumed to be http://hostname:4444, the --grid-url will be the same --publish-events will be tcp://hostname:4442 and --subscribe-events will be tcp://hostname:4443. If hostname contains a port number, that will be used for --grid-url but the URIs for the event bus will remain the same. Any of these default values may be overridden but setting the correct flags. If the hostname has a protocol (such as https) that will be used too.
--enable-cdp
boolean
true
Enable CDP proxying in Grid. A Grid admin can disable CDP if the network doesnot allow websockets. True by default.
--enable-managed-downloads
boolean
false
This causes the Node to auto manage files downloaded for a given session on the Node.
--selenium-manager
boolean
false
When drivers are not available on the current system, use Selenium Manager. False by default.
Relay
Option
Type
Value/Example
Description
--service-url
string
http://localhost:4723
URL for connecting to the service that supports WebDriver commands like an Appium server or a cloud service.
--service-host
string
localhost
Host name where the service that supports WebDriver commands is running
--service-port
int
4723
Port where the service that supports WebDriver commands is running
--service-status-endpoint
string
/status
Optional, endpoint to query the WebDriver service status, an HTTP 200 response is expected
Configuration for the service where calls will be relayed to. It is recommended to provide this type of configuration through a toml config file to improve readability.
Router
Option
Type
Value/Example
Description
--password
string
myStrongPassword
Password clients must use to connect to the server. Both this and the username need to be set in order to be used.
--username
string
admin
User name clients must use to connect to the server. Both this and the password need to be set in order to be used.
--sub-path
string
my_company/selenium_grid
A sub-path that should be considered for all user facing routes on the Hub/Router/Standalone.
Server
Option
Type
Value/Example
Description
--external-url
string
http://10.0.1.1:33333
External URL where component is generally available. Useful on complex network topologies when components are on different networks and proxy servers are involved.
--allow-cors
boolean
true
Whether the Selenium server should allow web browser connections from any host
--host
string
localhost
Server IP or hostname: usually determined automatically.
--bind-host
boolean
true
Whether the server should bind to the host address/name, or only use it to" report its reachable url. Helpful in complex network topologies where the server cannot report itself with the current IP/hostname but rather an external IP or hostname (e.g. inside a Docker container)
--https-certificate
path
/path/to/cert.pem
Server certificate for https. Get more detailed information by running “java -jar selenium-server.jar info security”
--https-private-key
path
/path/to/key.pkcs8
Private key for https. Get more detailed information by running “java -jar selenium-server.jar info security”
--max-threads
int
24
Maximum number of listener threads. Default value is: (available processors) * 3.
--port
int
4444
Port to listen on. There is no default as this parameter is used by different components, for example, Router/Hub/Standalone will use 4444 and Node will use 5555.
SessionQueue
Option
Type
Value/Example
Description
--sessionqueue
uri
http://localhost:1237
Address of the session queue server.
-sessionqueue-host
string
localhost
Host on which the session queue server is listening.
--sessionqueue-port
int
1234
Port on which the session queue server is listening.
--session-request-timeout
int
300
Timeout in seconds. A new incoming session request is added to the queue. Requests sitting in the queue for longer than the configured time will timeout.
--session-retry-interval
int
5
Retry interval in seconds. If all slots are busy, new session request will be retried after the given interval.
Sessions
Option
Type
Value/Example
Description
--sessions
uri
http://localhost:1234
Address of the session map server.
--sessions-host
string
localhost
Host on which the session map server is listening.
--sessions-port
int
1234
Port on which the session map server is listening.
Configuration examples
All the options mentioned above can be used when starting the Grid components. They are a good
way of exploring the Grid options, and trying out values to find a suitable configuration.
We recommend the use of Toml files to configure a Grid.
Configuration files improve readability, and you can also check them in source control.
When needed, you can combine a Toml file configuration with CLI arguments.
Command-line flags
To pass config options as command-line flags, identify the valid options for the component
and follow the template below.
java -jar selenium-server-<version>.jar <component> --<option> value
The Grid infrastructure will try to match a session request with "se:downloadsEnabled" against ONLY those nodes which were started with --enable-managed-downloads true
If a session is matched, then the Node automatically sets the required capabilities to let the browser know, as to where should a file be downloaded.
The Node now allows a user to:
List all the files that were downloaded for a specific session and
Retrieve a specific file from the list of files.
The directory into which files were downloaded for a specific session gets automatically cleaned up when the session ends (or) timesout due to inactivity.
Note: Currently this capability is ONLY supported on:
Edge
Firefox and
Chrome browser
Listing files that can be downloaded for current session:
The endpoint to GET from is /session/<sessionId>/se/files.
The session needs to be active in order for the command to work.
contents - Base64 encoded zipped contents of the file.
The file contents are Base64 encoded and they need to be unzipped.
List files that can be downloaded
The below mentioned curl example can be used to list all the files that were downloaded by the current session in the Node, and which can be retrieved locally.
curl -X GET "http://localhost:4444/session/90c0149a-2e75-424d-857a-e78734943d4c/se/files"
Below is an example in Java that does the following:
Sets the capability to indicate that the test requires automatic managing of downloaded files.
Triggers a file download via a browser.
Lists the files that are available for retrieval from the remote node (These are essentially files that were downloaded in the current session)
Picks one file and downloads the file from the remote node to the local machine.
importcom.google.common.collect.ImmutableMap;importorg.openqa.selenium.By;importorg.openqa.selenium.io.Zip;importorg.openqa.selenium.json.Json;importorg.openqa.selenium.remote.RemoteWebDriver;importorg.openqa.selenium.remote.http.HttpClient;importorg.openqa.selenium.remote.http.HttpRequest;importorg.openqa.selenium.remote.http.HttpResponse;importjava.io.File;importjava.net.URL;importjava.nio.file.Files;importjava.util.List;importjava.util.Map;importjava.util.Optional;importjava.util.concurrent.TimeUnit;import staticorg.openqa.selenium.remote.http.Contents.asJson;import staticorg.openqa.selenium.remote.http.Contents.string;import staticorg.openqa.selenium.remote.http.HttpMethod.GET;import staticorg.openqa.selenium.remote.http.HttpMethod.POST;publicclassDownloadsSample{publicstaticvoidmain(String[]args)throwsException{// Assuming the Grid is running locally.
URLgridUrl=newURL("http://localhost:4444");ChromeOptionsoptions=newChromeOptions();options.setCapability("se:downloadsEnabled",true);RemoteWebDriverdriver=newRemoteWebDriver(gridUrl,options);try{demoFileDownloads(driver,gridUrl);}finally{driver.quit();}}privatestaticvoiddemoFileDownloads(RemoteWebDriverdriver,URLgridUrl)throwsException{driver.get("https://www.selenium.dev/selenium/web/downloads/download.html");// Download the two available files on the page
driver.findElement(By.id("file-1")).click();driver.findElement(By.id("file-2")).click();// The download happens in a remote Node, which makes it difficult to know when the file
// has been completely downloaded. For demonstration purposes, this example uses a
// 10-second sleep which should be enough time for a file to be downloaded.
// We strongly recommend to avoid hardcoded sleeps, and ideally, to modify your
// application under test, so it offers a way to know when the file has been completely
// downloaded.
TimeUnit.SECONDS.sleep(10);//This is the endpoint which will provide us with list of files to download and also to
//let us download a specific file.
StringdownloadsEndpoint=String.format("/session/%s/se/files",driver.getSessionId());StringfileToDownload;try(HttpClientclient=HttpClient.Factory.createDefault().createClient(gridUrl)){// To list all files that are were downloaded on the remote node for the current session
// we trigger GET request.
HttpRequestrequest=newHttpRequest(GET,downloadsEndpoint);HttpResponseresponse=client.execute(request);Map<String,Object>jsonResponse=newJson().toType(string(response),Json.MAP_TYPE);@SuppressWarnings("unchecked")Map<String,Object>value=(Map<String,Object>)jsonResponse.get("value");@SuppressWarnings("unchecked")List<String>names=(List<String>)value.get("names");// Let's say there were "n" files downloaded for the current session, we would like
// to retrieve ONLY the first file.
fileToDownload=names.get(0);}// Now, let's download the file
try(HttpClientclient=HttpClient.Factory.createDefault().createClient(gridUrl)){// To retrieve a specific file from one or more files that were downloaded by the current session
// on a remote node, we use a POST request.
HttpRequestrequest=newHttpRequest(POST,downloadsEndpoint);request.setContent(asJson(ImmutableMap.of("name",fileToDownload)));HttpResponseresponse=client.execute(request);Map<String,Object>jsonResponse=newJson().toType(string(response),Json.MAP_TYPE);@SuppressWarnings("unchecked")Map<String,Object>value=(Map<String,Object>)jsonResponse.get("value");// The returned map would contain 2 keys,
// filename - This represents the name of the file (same as what was provided by the test)
// contents - Base64 encoded String which contains the zipped file.
StringzippedContents=value.get("contents").toString();// The file contents would always be a zip file and has to be unzipped.
FiledownloadDir=Zip.unzipToTempDir(zippedContents,"download","");// Read the file contents
FiledownloadedFile=Optional.ofNullable(downloadDir.listFiles()).orElse(newFile[]{})[0];StringfileContent=String.join("",Files.readAllLines(downloadedFile.toPath()));System.out.println("The file which was "+"downloaded in the node is now available in the directory: "+downloadDir.getAbsolutePath()+" and has the contents: "+fileContent);}}}
3.4.3 - TOML configuration options
Grid configuration examples using Toml files.
All the options shown in CLI options can be configured through
a TOML file. This page shows configuration examples for the
different Grid components.
Note that this documentation could be outdated if an option was modified or added
but has not been documented yet. In case you bump into this situation, please check
the “Config help” section and feel free to send us a
pull request updating this page.
Overview
Selenium Grid uses TOML format for config files.
The config file consists of sections and each section has options and its respective value(s).
Refer to the TOML documentation for detailed usage guidance. In case of
parsing errors, validate the config using TOML linter.
The general configuration structure has the following pattern:
A Standalone or Node server that is able to run each new session in a Docker container. Disabling
drivers detection, having maximum 2 concurrent sessions. Stereotypes configured need to be mapped
to a Docker image, and the Docker daemon needs to be exposed via http/tcp. In addition, it is
possible to define which device files, accessible on the host, will be available in containers
through the devices property. Refer to the docker documentation
for more information about how docker device mapping works.
[node]detect-drivers=falsemax-sessions=2[docker]configs=["selenium/standalone-chrome:93.0","{\"browserName\": \"chrome\", \"browserVersion\": \"91\"}","selenium/standalone-firefox:92.0","{\"browserName\": \"firefox\", \"browserVersion\": \"92\"}"]#Optionally define all device files that should be mapped to docker containers#devices = [# "/dev/kvm:/dev/kvm"#]url="http://localhost:2375"video-image="selenium/video:latest"
Relaying commands to a service endpoint that supports WebDriver
It is useful to connect an external service that supports WebDriver to Selenium Grid.
An example of such service could be a cloud provider or an Appium server. In this way,
Grid can enable more coverage to platforms and versions not present locally.
The following is an en example of connecting an Appium server to Grid.
[node]detect-drivers=false[relay]# Default Appium/Cloud server endpointurl="http://localhost:4723/wd/hub"status-endpoint="/status"# Stereotypes supported by the service. The initial number is "max-sessions", and will allocate # that many test slots to that particular configurationconfigs=["5","{\"browserName\": \"chrome\", \"platformName\": \"android\", \"appium:platformVersion\": \"11\"}"]
Basic auth enabled
It is possible to protect a Grid with basic auth by configuring the Router/Hub/Standalone with
a username and password. This user/password combination will be needed when loading the Grid UI
or starting a new session.
The Node can be instructed to manage downloads automatically. This will cause the Node to save all files that were downloaded for a particular session into a temp directory, which can later be retrieved from the node.
To turn this capability on, use the below configuration:
The Grid is designed as a set of components that all fulfill a role in
maintaining the Grid. It can seem quite complicated, but hopefully
this document can help clear up any confusion.
The Key Components
The main components of the Grid are:
Event Bus
Used for sending messages which may be received asynchronously
between the other components.
New Session Queue
Maintains a list of incoming sessions which have yet to be
assigned to a Node by the Distributor.
Distributor
Responsible for maintaining a model of the available locations in
the Grid where a session may run (known as "slots") and taking any
incoming new
session requests and assigning them to a slot.
Node
Runs a WebDriver
session. Each session is assigned to a slot, and each node has
one or more slots.
Session Map
Maintains a mapping between the session
ID and the address of the Node the session is running on.
Router
Acts as the front-end of the Grid. This is the only part of the
Grid which may be exposed to the wider Web (though we strongly
caution against it). This routes incoming requests to either the
New Session Queue or the Node on which the session is running.
While discussing the Grid, there are some other useful concepts to
keep in mind:
A slot is the place where a session can run.
Each slot has a stereotype. This is the minimal set of
capabilities that a new session session request must match
before the Distributor will send that request to the Node owning
the slot.
The Grid Model is how the Distributor tracks the state of the
Grid. As the name suggests, this may sometimes fall out of sync
with reality (perhaps because the Distributor has only just
started). It is used in preference to querying each Node so that
the Distributor can quickly assign a slot to a New Session request.
Synchronous and Asynchronous Calls
There are two main communication mechanisms used within the Grid:
Synchronous “REST-ish” JSON over HTTP requests.
Asynchronous events sent to the Event Bus.
How do we pick which communication mechanism to use? After all, we
could model the entire Grid in an event-based way, and it would work
out just fine.
The answer is that if the action being performed is synchronous
(eg. most WebDriver calls), or if missing the response would be
problematic, the Grid uses a synchronous call. If, instead, we want to
broadcast information to anyone who’s interested, or if missing the
response doesn’t matter, then we prefer to use the event bus.
One interesting thing to note is that the async calls are more
decoupled from their listeners than the synchronous calls are.
Start Up Sequence and Dependencies Between Components
Although the Grid is designed to allow components to start up in any
order, conceptually the order in which components starts is:
The Event Bus and Session Map start first. These have no other
dependencies, not even on each other, and so are safe to start in
parallel.
The Session Queue starts next.
It is now possible to start the Distributor. This will periodically
connect to the Session Queue and poll for jobs, though this polling
might be initiated either by an event (that a New Session has been
added to the queue) or at regular intervals.
The Router(s) can be started. New Session requests will be directed
to the Session Queue, and the Distributor will attempt to find a
slot to run the session on.
We are now able to start a Node. See below for details about how
the Node is registered with the Grid. Once registration is
complete, the Grid is ready to serve traffic.
You can picture the dependencies between components this way, where a
“✅” indicates that there is a synchronous dependency between the
components.
Event Bus
Distributor
Node
Router
Session Map
Session Queue
Event Bus
X
Distributor
✅
X
✅
✅
Node
✅
X
Router
✅
X
✅
Session Map
X
Session Queue
✅
X
Node Registration
The process of registering a new Node to the Grid is lightweight.
When the Node starts, it should emit a “heart beat” event on a
regular basis. This heartbeat contains the node status.
The Distributor listens for the heart beat events. When it sees
one, it attempts to GET the /status endpoint of the Node. It
is from this information that the Grid is set up.
The Distributor will use the same /status endpoint to check the Node
on a regular basis, but the Node should continue sending heart beat
events even after started so that a Distributor without a persistent
store of the Grid state can be restarted and will (eventually) be up
to date and correct.
The Node Status Object
The Node Status is a JSON blob with the following fields:
Name
Type
Description
availability
string
A string which is one of up, draining, or down. The important one is draining, which indicates that no new sessions should be sent to the Node, and once the last session on it closes, the Node will exit or restart.
externalUrl
string
The URI that the other components in the Grid should connect to.
lastSessionCreated
integer
The epoch timestamp of when the last session was created on this Node. The Distributor will attempt to send new sessions to the Node that has been idle longest if all other things are equal.
maxSessionCount
integer
Although a session count can be inferred by counting the number of available slots, this integer value is used to determine the maximum number of sessions that should be running simultaneously on the Node before it is considered “full”.
nodeId
string
A UUID used to identify this instance of the Node.
osInfo
object
An object with arch, name, and version fields. This is used by the Grid UI and the GraphQL queries.
slots
array
An array of Slot objects (described below)
version
string
The version of the Node (for Selenium, this will match the Selenium version number)
It is recommended to put values in all fields.
The Slot Object
The Slot object represents a single slot within a Node. A “slot” is
where a single session may be run. It is possible that a Node will
have more slots than it can run concurrently. For example, a node may
be able to run up 10 sessions, but they could be any combination of
Chrome, Edge, or Firefox; in this case, the Node would indicate a “max
session count” of 10, and then also say it has 10 slots for Chrome, 10
for Edge, and 10 for Firefox.
Name
Type
Description
id
string
UUID to refer to the slot
lastStarted
string
When the slot last had a session started, in ISO-8601 format
stereotype
object
The minimal set of capabilities this slot will match against. A minimal example is {"browserName": "firefox"}
session
object
The Session object (see below)
The Session Object
This represents a running session within a slot
Name
Type
Description
capabilities
object
The actual capabilities provided by the session. Will match the return value from the new session command
startTime
string
The start time of the session in ISO-8601 format
stereotype
object
The minimal set of capabilities this slot will match against. A minimal example is {"browserName": "firefox"}
uri
string
The URI used by the Node to communicate with the session
3.6 - Advanced features of Selenium
To get all the details of the advanced features, understand how it works, and how to set up your own, please browse thorough the following sections.
Grid aids in scaling and distributing tests by executing tests on various browser and operating system combinations.
Observability
Observability has three pillars: traces, metrics and logs. Since Selenium Grid 4 is designed to be fully distributed, observability will make it easier to understand and debug the internals.
Distributed tracing
A single request or transaction spans multiple services and components. Tracing tracks the request lifecycle as each service executes the request. It is useful in debugging in an error scenario.
Some key terms used in tracing context are:
Trace
Tracing allows one to trace a request through multiple services, starting from its origin to its final destination. This request’s journey helps in debugging, monitoring the end-to-end flow, and identifying failures. A trace depicts the end-to-end request flow. Each trace has a unique id as its identifier.
Span
Each trace is made up of timed operations called spans. A span has a start and end time and it represents operations done by a service. The granularity of span depends on how it is instrumented. Each span has a unique identifier. All spans within a trace have the same trace id.
Span Attributes
Span attributes are key-value pairs which provide additional information about each span.
Events
Events are timed-stamped logs within a span. They provide additional context to the existing spans. Events also contain key-value pairs as event attributes.
Event logging
Logging is essential to debug an application. Logging is often done in a human-readable format. But for machines to search and analyze the logs, it has to have a well-defined format. Structured logging is a common practice of recording logs consistently in a fixed format. It commonly contains fields like:
Timestamp
Logging level
Logger class
Log message (This is further broken down into fields relevant to the operation where the log was recorded)
Logs and events are closely related. Events encapsulate all the possible information available to do a single unit of work. Logs are essentially subsets of an event. At the crux, both aid in debugging.
Refer following resources for detailed understanding:
Selenium server is instrumented with tracing using OpenTelemetry. Every request to the server is traced from start to end. Each trace consists of a series of spans as a request is executed within the server.
Most spans in the Selenium server consist of two events:
Normal event - records all information about a unit of work and marks successful completion of the work.
Error event - records all information till the error occurs and then records the error information. Marks an exception event.
All spans, events and their respective attributes are part of a trace. Tracing works while running the server in all of the above-mentioned modes.
By default, tracing is enabled in the Selenium server. Selenium server exports the traces via two exporters:
Console - Logs all traces and their included spans at FINE level. By default, Selenium server prints logs at INFO level and above.
The log-level flag can be used to pass a logging level of choice while running the Selenium Grid jar/s.
java -jar selenium-server-4.0.0-<selenium-version>.jar standalone --log-level FINE
Jaeger UI - OpenTelemetry provides the APIs and SDKs to instrument traces in the code. Whereas Jaeger is a tracing backend, that aids in collecting the tracing telemetry data and providing querying, filtering and visualizing features for the data.
Detailed instructions of visualizing traces using Jaeger UI can be obtained by running the command :
java -jar selenium-server-4.0.0-<selenium-version>.jar info tracing
Tracing has to be enabled for event logging as well, even if one does not wish to export traces to visualize them. By default, tracing is enabled. No additional parameters need to be passed to see logs on the console.
All events within a span are logged at FINE level. Error events are logged at WARN level.
All event logs have the following fields :
Field
Field value
Description
Event time
eventId
Timestamp of the event record in epoch nanoseconds.
Trace Id
tracedId
Each trace is uniquely identified by a trace id.
Span Id
spanId
Each span within a trace is uniquely identified by a span id.
Span Kind
spanKind
Span kind is a property of span indicating the type of span. It helps in understanding the nature of the unit of work done by the Span.
Event name
eventName
This maps to the log message.
Event attributes
eventAttributes
This forms the crux of the event logs, based on the operation executed, it has JSON formatted key-value pairs. This also includes a handler class attribute, to show the logger class.
GraphQL is a query language for APIs and a runtime for fulfilling those queries
with your existing data. It gives users the power to ask for exactly what they need and nothing more.
Enums
Enums represent possible sets of values for a field.
For example, the Node object has a field called status. The state is an enum
(specifically, of type Status) because it may be UP , DRAINING or UNAVAILABLE.
Scalars
Scalars are primitive values: Int, Float, String, Boolean, or ID.
When calling the GraphQL API, you must specify nested subfield until you return only scalars.
The best way to query GraphQL is by using curl requests. The query is interpreted as JSON. Ensure double quotes are properly escaped to avoid unexpected errors.
GraphQL allows you to fetch only the data that you want, nothing more nothing less.
Some of the example GraphQL queries are given below. You can build your own
queries as you like.
Querying the number of maxSession and sessionCount in the grid :
Grid status provides the current state of the Grid. It consists of details about every registered Node.
For every Node, the status includes information regarding Node availability, sessions, and slots.
cURL GET 'http://localhost:4444/status'
In the Standalone mode, the Grid URL is the Standalone server address.
In the Hub-Node mode, the Grid URL is the Hub server address.
In the fully distributed mode, the Grid URL is the Router server address.
Default URL for all the above modes is http://localhost:4444.
Distributor
Remove Node
To remove the Node from the Grid, use the cURL command enlisted below.
It does not stop any ongoing session running on that Node.
The Node continues running as it is unless explicitly killed.
The Distributor is no longer aware of the Node and hence any matching new session request
will not be forwarded to that Node.
In the Standalone mode, the Distributor URL is the Standalone server address.
In the Hub-Node mode, the Distributor URL is the Hub server address.
Node drain command is for graceful node shutdown.
Draining a Node stops the Node after all the ongoing sessions are complete.
However, it does not accept any new session requests.
In the Standalone mode, the Distributor URL is the Standalone server address.
In the Hub-Node mode, the Distributor URL is the Hub server address.
cURL --request POST 'http://localhost:4444/se/grid/distributor/node/<node-id>/drain' --header 'X-REGISTRATION-SECRET: <secret> '
In the fully distributed mode, the URL is the Distributor server address.
cURL --request POST 'http://localhost:5553/se/grid/distributor/node/<node-id>/drain' --header 'X-REGISTRATION-SECRET: <secret>'
If no registration secret has been configured while setting up the Grid, then use
cURL --request POST 'http://<Distributor-URL>/se/grid/distributor/node/<node-id>/drain' --header 'X-REGISTRATION-SECRET;'
Node
The endpoints in this section are applicable for Hub-Node mode and fully distributed Grid mode where the
Node runs independently.
The default Node URL is http://localhost:5555 in case of one Node.
In case of multiple Nodes, use Grid status to get all Node details and locate the Node address.
Status
The Node status is essentially a health-check for the Node.
Distributor pings the node status are regular intervals and updates the Grid Model accordingly.
The status includes information regarding availability, sessions, and slots.
cURL --request GET 'http://localhost:5555/status'
Drain
Distributor passes the drain command to the appropriate node identified by the node-id.
To drain the Node directly, use the cuRL command enlisted below.
Both endpoints are valid and produce the same result. Drain finishes the ongoing sessions before stopping the Node.
cURL --request POST 'http://localhost:5555/se/grid/node/drain' --header 'X-REGISTRATION-SECRET: <secret>'
If no registration secret has been configured while setting up the Grid, then use
cURL --request POST 'http://<node-URL>/se/grid/node/drain' --header 'X-REGISTRATION-SECRET;'
Check session owner
To check if a session belongs to a Node, use the cURL command enlisted below.
cURL --request GET 'http://localhost:5555/se/grid/node/owner/<session-id>' --header 'X-REGISTRATION-SECRET: <secret>'
If no registration secret has been configured while setting up the Grid, then use
cURL --request GET 'http://<node-URL>/se/grid/node/owner/<session-id>' --header 'X-REGISTRATION-SECRET;'
It will return true if the session belongs to the Node else it will return false.
Delete session
Deleting the session terminates the WebDriver session, quits the driver and removes it from the active sessions map.
Any request using the removed session-id or reusing the driver instance will throw an error.
New Session Request Queue holds the new session requests.
To clear the queue, use the cURL command enlisted below.
Clearing the queue rejects all the requests in the queue. For each such request, the server returns an error response to the respective client.
The result of the clear command is the total number of deleted requests.
In the Standalone mode, the Queue URL is the Standalone server address.
In the Hub-Node mode, the Queue URL is the Hub server address.
New Session Request Queue holds the new session requests.
To get the current requests in the queue, use the cURL command enlisted below.
The response returns the total number of requests in the queue and the request payloads.
In the Standalone mode, the Queue URL is the Standalone server address.
In the Hub-Node mode, the Queue URL is the Hub server address.
cURL --request GET 'http://localhost:4444/se/grid/newsessionqueue/queue'
In the fully distributed mode, the Queue URL is New Session Queue server address.
cURL --request GET 'http://localhost:5559/se/grid/newsessionqueue/queue'
3.6.4 - Customizing a Node
How to customize a Node
There are times when we would like a Node to be customized to our needs.
For e.g., we may like to do some additional setup before a session begins execution and some clean-up after a session runs to completion.
Following steps can be followed for this:
Create a class that extends org.openqa.selenium.grid.node.Node
Add a static method (this will be our factory method) to the newly created class whose signature looks like this:
public static Node create(Config config). Here:
Node is of type org.openqa.selenium.grid.node.Node
Config is of type org.openqa.selenium.grid.config.Config
Within this factory method, include logic for creating your new Class.
To wire in this new customized logic into the hub, start the node and pass in the fully qualified class name of the above class to the argument --node-implementation
Let’s see an example of all this:
Custom Node as an uber jar
Create a sample project using your favourite build tool (Maven|Gradle).
Note: If you are using Maven as a build tool, please prefer using maven-shade-plugin instead of maven-assembly-plugin because maven-assembly plugin seems to have issues with being able to merge multiple Service Provider Interface files (META-INF/services)
Custom Node as a regular jar
Create a sample project using your favourite build tool (Maven|Gradle).
Below is a sample that just prints some messages on to the console whenever there’s an activity of interest (session created, session deleted, a webdriver command executed etc.,) on the Node.
Sample customized node
packageorg.seleniumhq.samples;importjava.io.IOException;importjava.net.URI;importjava.util.UUID;importjava.util.function.Supplier;importorg.openqa.selenium.Capabilities;importorg.openqa.selenium.NoSuchSessionException;importorg.openqa.selenium.WebDriverException;importorg.openqa.selenium.grid.config.Config;importorg.openqa.selenium.grid.data.CreateSessionRequest;importorg.openqa.selenium.grid.data.CreateSessionResponse;importorg.openqa.selenium.grid.data.NodeId;importorg.openqa.selenium.grid.data.NodeStatus;importorg.openqa.selenium.grid.data.Session;importorg.openqa.selenium.grid.log.LoggingOptions;importorg.openqa.selenium.grid.node.HealthCheck;importorg.openqa.selenium.grid.node.Node;importorg.openqa.selenium.grid.node.local.LocalNodeFactory;importorg.openqa.selenium.grid.security.Secret;importorg.openqa.selenium.grid.security.SecretOptions;importorg.openqa.selenium.grid.server.BaseServerOptions;importorg.openqa.selenium.internal.Either;importorg.openqa.selenium.io.TemporaryFilesystem;importorg.openqa.selenium.remote.SessionId;importorg.openqa.selenium.remote.http.HttpRequest;importorg.openqa.selenium.remote.http.HttpResponse;importorg.openqa.selenium.remote.tracing.Tracer;publicclassDecoratedLoggingNodeextendsNode{privateNodenode;protectedDecoratedLoggingNode(Tracertracer,URIuri,SecretregistrationSecret){super(tracer,newNodeId(UUID.randomUUID()),uri,registrationSecret);}publicstaticNodecreate(Configconfig){LoggingOptionsloggingOptions=newLoggingOptions(config);BaseServerOptionsserverOptions=newBaseServerOptions(config);URIuri=serverOptions.getExternalUri();SecretOptionssecretOptions=newSecretOptions(config);// Refer to the foot notes for additional context on this line.
Nodenode=LocalNodeFactory.create(config);DecoratedLoggingNodewrapper=newDecoratedLoggingNode(loggingOptions.getTracer(),uri,secretOptions.getRegistrationSecret());wrapper.node=node;returnwrapper;}@OverridepublicEither<WebDriverException,CreateSessionResponse>newSession(CreateSessionRequestsessionRequest){returnperform(()->node.newSession(sessionRequest),"newSession");}@OverridepublicHttpResponseexecuteWebDriverCommand(HttpRequestreq){returnperform(()->node.executeWebDriverCommand(req),"executeWebDriverCommand");}@OverridepublicSessiongetSession(SessionIdid)throwsNoSuchSessionException{returnperform(()->node.getSession(id),"getSession");}@OverridepublicHttpResponseuploadFile(HttpRequestreq,SessionIdid){returnperform(()->node.uploadFile(req,id),"uploadFile");}@OverridepublicHttpResponsedownloadFile(HttpRequestreq,SessionIdid){returnperform(()->node.downloadFile(req,id),"downloadFile");}@OverridepublicTemporaryFilesystemgetDownloadsFilesystem(UUIDuuid){returnperform(()->{try{returnnode.getDownloadsFilesystem(uuid);}catch(IOExceptione){thrownewRuntimeException(e);}},"downloadsFilesystem");}@OverridepublicTemporaryFilesystemgetUploadsFilesystem(SessionIdid)throwsIOException{returnperform(()->{try{returnnode.getUploadsFilesystem(id);}catch(IOExceptione){thrownewRuntimeException(e);}},"uploadsFilesystem");}@Overridepublicvoidstop(SessionIdid)throwsNoSuchSessionException{perform(()->node.stop(id),"stop");}@OverridepublicbooleanisSessionOwner(SessionIdid){returnperform(()->node.isSessionOwner(id),"isSessionOwner");}@OverridepublicbooleanisSupporting(Capabilitiescapabilities){returnperform(()->node.isSupporting(capabilities),"isSupporting");}@OverridepublicNodeStatusgetStatus(){returnperform(()->node.getStatus(),"getStatus");}@OverridepublicHealthCheckgetHealthCheck(){returnperform(()->node.getHealthCheck(),"getHealthCheck");}@Overridepublicvoiddrain(){perform(()->node.drain(),"drain");}@OverridepublicbooleanisReady(){returnperform(()->node.isReady(),"isReady");}privatevoidperform(Runnablefunction,Stringoperation){try{System.err.printf("[COMMENTATOR] Before %s()%n",operation);function.run();}finally{System.err.printf("[COMMENTATOR] After %s()%n",operation);}}private<T>Tperform(Supplier<T>function,Stringoperation){try{System.err.printf("[COMMENTATOR] Before %s()%n",operation);returnfunction.get();}finally{System.err.printf("[COMMENTATOR] After %s()%n",operation);}}}
Foot Notes:
In the above example, the line Node node = LocalNodeFactory.create(config); explicitly creates a LocalNode.
There are basically 2 types of user facing implementations of org.openqa.selenium.grid.node.Node available.
These classes are good starting points to learn how to build a custom Node and also to learn the internals of a Node.
org.openqa.selenium.grid.node.local.LocalNode - Used to represent a long running Node and is the default implementation that gets wired in when you start a node.
It can be created by calling LocalNodeFactory.create(config);, where:
LocalNodeFactory belongs to org.openqa.selenium.grid.node.local
Config belongs to org.openqa.selenium.grid.config
org.openqa.selenium.grid.node.k8s.OneShotNode - This is a special reference implementation wherein the Node gracefully shuts itself down after servicing one test session. This class is currently not available as part of any pre-built maven artifact.
You can refer to the source code here to understand its internals.
Selenium Grid allows you to persist information related to currently running sessions into an external data store.
The external data store could be backed by your favourite database (or) Redis Cache system.
Setup
Coursier - As a dependency resolver, so that we can download maven artifacts on the fly and make them available in our classpath
Docker - To manage our PostGreSQL/Redis docker containers.
Database backed Session Map
For the sake of this illustration, we are going to work with PostGreSQL database.
We will spin off a PostGreSQL database as a docker container using a docker compose file.
Steps
You can skip this step if you already have a PostGreSQL database instance available at your disposal.
Create a sql file named init.sql with the below contents:
We can now start our database container by running:
docker-compose up -d
Our database name is selenium_sessions with its username and password set to seluser
If you are working with an already running PostGreSQL DB instance, then you just need to create a database named selenium_sessions and the table sessions_map using the above mentioned SQL statement.
Create a Selenium Grid configuration file named sessions.toml with the below contents:
At this point the current directory should contain the following files:
docker-compose.yml
init.sql
sessions.toml
distributed.sh
You can now spawn the Grid by running distributed.sh shell script and quickly run a test. You will notice that the Grid now stores session information into the PostGreSQL database.
In the line which spawns a SessionMap on a machine:
At this point the current directory should contain the following files:
docker-compose.yml
sessions.toml
distributed.sh
You can now spawn the Grid by running distributed.sh shell script and quickly run a test. You will notice that the Grid now stores session information into the Redis instance. You can perhaps make use of a Redis GUI such as TablePlus to see them (Make sure that you have setup a debug point in your test, because the values will get deleted as soon as the test runs to completion).
In the line which spawns a SessionMap on a machine:
The InternetExplorerDriver is a standalone server which implements WebDriver’s wire protocol.
This driver has been tested with IE 11, and on Windows 10. It might work with older versions
of IE and Windows, but this is not supported.
The driver supports running 32-bit and 64-bit versions of the browser. The choice of how to
determine which “bit-ness” to use in launching the browser depends on which version of the
IEDriverServer.exe is launched. If the 32-bit version of IEDriverServer.exe is launched,
the 32-bit version of IE will be launched. Similarly, if the 64-bit version of
IEDriverServer.exe is launched, the 64-bit version of IE will be launched.
Installing
You do not need to run an installer before using the InternetExplorerDriver, though some
configuration is required. The standalone server executable must be downloaded from
the Downloads page and placed in your
PATH.
Pros
Runs in a real browser and supports JavaScript
Cons
Obviously the InternetExplorerDriver will only work on Windows!
Comparatively slow (though still pretty snappy :)
Command-Line Switches
As a standalone executable, the behavior of the IE driver can be modified through various
command-line arguments. To set the value of these command-line arguments, you should
consult the documentation for the language binding you are using. The command line
switches supported are described in the table below. All -<switch>, –<switch>
and /<switch> are supported.
Switch
Meaning
–port=<portNumber>
Specifies the port on which the HTTP server of the IE driver will listen for commands from language bindings. Defaults to 5555.
–host=<hostAdapterIPAddress>
Specifies the IP address of the host adapter on which the HTTP server of the IE driver will listen for commands from language bindings. Defaults to 127.0.0.1.
–log-level=<logLevel>
Specifies the level at which logging messages are output. Valid values are FATAL, ERROR, WARN, INFO, DEBUG, and TRACE. Defaults to FATAL.
–log-file=<logFile>
Specifies the full path and file name of the log file. Defaults to stdout.
–extract-path=<path>
Specifies the full path to the directory used to extract supporting files used by the server. Defaults to the TEMP directory if not specified.
–silent
Suppresses diagnostic output when the server is started.
Important System Properties
The following system properties (read using System.getProperty() and set using
System.setProperty() in Java code or the “-DpropertyName=value” command line flag)
are used by the InternetExplorerDriver:
Property
What it means
webdriver.ie.driver
The location of the IE driver binary.
webdriver.ie.driver.host
Specifies the IP address of the host adapter on which the IE driver will listen.
webdriver.ie.driver.loglevel
Specifies the level at which logging messages are output. Valid values are FATAL, ERROR, WARN, INFO, DEBUG, and TRACE. Defaults to FATAL.
webdriver.ie.driver.logfile
Specifies the full path and file name of the log file.
webdriver.ie.driver.silent
Suppresses diagnostic output when the IE driver is started.
webdriver.ie.driver.extractpath
Specifies the full path to the directory used to extract supporting files used by the server. Defaults to the TEMP directory if not specified.
Required Configuration
The IEDriverServer executable must be downloaded and placed in your PATH.
On IE 7 or higher on Windows Vista, Windows 7, or Windows 10, you must set the Protected Mode settings for each zone to be the same value. The value can be on or off, as long as it is the same for every zone. To set the Protected Mode settings, choose “Internet Options…” from the Tools menu, and click on the Security tab. For each zone, there will be a check box at the bottom of the tab labeled “Enable Protected Mode”.
Additionally, “Enhanced Protected Mode” must be disabled for IE 10 and higher. This option is found in the Advanced tab of the Internet Options dialog.
The browser zoom level must be set to 100% so that the native mouse events can be set to the correct coordinates.
For Windows 10, you also need to set “Change the size of text, apps, and other items” to 100% in display settings.
For IE 11 only, you will need to set a registry entry on the target computer so that the driver can maintain a connection to the instance of Internet Explorer it creates. For 32-bit Windows installations, the key you must examine in the registry editor is HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Internet Explorer\Main\FeatureControl\FEATURE_BFCACHE. For 64-bit Windows installations, the key is HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Microsoft\Internet Explorer\Main\FeatureControl\FEATURE_BFCACHE. Please note that the FEATURE_BFCACHE subkey may or may not be present, and should be created if it is not present. Important: Inside this key, create a DWORD value named iexplore.exe with the value of 0.
Native Events and Internet Explorer
As the InternetExplorerDriver is Windows-only, it attempts to use so-called “native”, or OS-level
events to perform mouse and keyboard operations in the browser. This is in contrast to using
simulated JavaScript events for the same operations. The advantage of using native events is that
it does not rely on the JavaScript sandbox, and it ensures proper JavaScript event propagation
within the browser. However, there are currently some issues with mouse events when the IE
browser window does not have focus, and when attempting to hover over elements.
Browser Focus
The challenge is that IE itself appears to not fully respect the Windows messages we send the
IE browser window (WM\_MOUSEDOWN and WM\_MOUSEUP) if the window doesn’t have the focus.
Specifically, the element being clicked on will receive a focus window around it, but the click
will not be processed by the element. Arguably, we shouldn’t be sending messages at all; rather,
we should be using the SendInput() API, but that API explicitly requires the window to have the
focus. We have two conflicting goals with the WebDriver project.
First, we strive to emulate the user as closely as possible. This means using native events
rather than simulating the events using JavaScript.
Second, we want to not require focus of the browser window being automated. This means that
just forcing the browser window to the foreground is suboptimal.
An additional consideration is the possibility of multiple IE instances running under multiple
WebDriver instances, which means any such “bring the window to the foreground” solution will
have to be wrapped in some sort of synchronizing construct (mutex?) within the IE driver’s
C++ code. Even so, this code will still be subject to race conditions, if, for example, the
user brings another window to the foreground between the driver bringing IE to the foreground
and executing the native event.
The discussion around the requirements of the driver and how to prioritize these two
conflicting goals is ongoing. The current prevailing wisdom is to prioritize the former over
the latter, and document that your machine will be unavailable for other tasks when using
the IE driver. However, that decision is far from finalized, and the code to implement it is
likely to be rather complicated.
Hovering Over Elements
When you attempt to hover over elements, and your physical mouse cursor is within the boundaries
of the IE browser window, the hover will not work. More specifically, the hover will appear
to work for a fraction of a second, and then the element will revert back to its previous
state. The prevailing theory why this occurs is that IE is doing hit-testing of some sort
during its event loop, which causes it to respond to the physical mouse position when the
physical cursor is within the window bounds. The WebDriver development team has been unable
to discover a workaround for this behavior of IE.
Clicking <option> Elements or Submitting Forms and alert()
There are two places where the IE driver does not interact with elements using native events.
This is in clicking <option> elements within a <select> element. Under normal circumstances,
the IE driver calculates where to click based on the position and size of the element, typically
as returned by the JavaScript getBoundingClientRect() method. However, for <option> elements,
getBoundingClientRect() returns a rectangle with zero position and zero size. The IE driver
handles this one scenario by using the click() Automation Atom, which essentially sets
the .selected property of the element and simulates the onChange event in JavaScript.
However, this means that if the onChange event of the <select> element contains JavaScript
code that calls alert(), confirm() or prompt(), calling WebElement’s click() method will
hang until the modal dialog is manually dismissed. There is no known workaround for this behavior
using only WebDriver code.
Similarly, there are some scenarios when submitting an HTML form via WebElement’s submit()
method may have the same effect. This can happen if the driver calls the JavaScript submit()
function on the form, and there is an onSubmit event handler that calls the JavaScript alert(),
confirm(), or prompt() functions.
This restriction is filed as issue 3508 (on Google Code).
Multiple instances of InternetExplorerDriver
With the creation of the IEDriverServer.exe, it should be possible to create and use multiple
simultaneous instances of the InternetExplorerDriver. However, this functionality is largely
untested, and there may be issues with cookies, window focus, and the like. If you attempt to
use multiple instances of the IE driver, and run into such issues, consider using the
RemoteWebDriver and virtual machines.
There are 2 solutions for problem with cookies (and another session items) shared between
multiple instances of InternetExplorer.
The first is to start your InternetExplorer in private mode. After that InternetExplorer will be
started with clean session data and will not save changed session data at quiting. To do so you
need to pass 2 specific capabilities to driver: ie.forceCreateProcessApi with true value
and ie.browserCommandLineSwitches with -private value. Be note that it will work only
for InternetExplorer 8 and newer, and Windows Registry
HKLM_CURRENT_USER\\Software\\Microsoft\\Internet Explorer\\Main path should contain key
TabProcGrowth with 0 value.
The second is to clean session during InternetExplorer starting. For this you need to pass
specific ie.ensureCleanSession capability with true value to driver. This clears the cache
for all running instances of InternetExplorer, including those started manually.
Running IEDriverServer.exe Remotely
The HTTP server started by the IEDriverServer.exe sets an access control list to only accept
connections from the local machine, and disallows incoming connections from remote machines.
At present, this cannot be changed without modifying the source code to the IEDriverServer.exe.
To run the Internet Explorer driver on a remote machine, use the Java standalone remote server
in connection with your language binding’s equivalent of RemoteWebDriver.
Running IEDriverServer.exe Under a Windows Service
Attempting to use IEDriverServer.exe as part of a Windows Service application is expressly
unsupported. Service processes, and processes spawned by them, have much different requirements
than those executing in a regular user context. IEDriverServer.exe is explicitly untested in
that environment, and includes Windows API calls that are documented to be prohibited to be used
in service processes. While it may be possible to get the IE driver to work while running under
a service process, users encountering problems in that environment will need to seek out their
own solutions.
4.1 - Internet Explorer Driver Internals
More detailed information on the IE Driver.
Client Code Into the Driver
We use the W3C WebDriver protocol to communicate with a local instance of an HTTP server. This greatly simplifies the implementation of the language-specific code, and minimzes the number of entry points into the C++ DLL that must be called using a native-code interop technology such as JNA, ctypes, pinvoke or DL.
Memory Management
The IE driver utilizes the Active Template Library (ATL) to take advantage of its implementation of smart pointers to COM objects. This makes reference counting and cleanup of COM objects much easier.
Why Do We Require Protected Mode Settings Changes?
IE 7 on Windows Vista introduced the concept of Protected Mode, which allows for some measure of protection to the underlying Windows OS when browsing. The problem is that when you manipulate an instance of IE via COM, and you navigate to a page that would cause a transition into or out of Protected Mode, IE requires that another browser session be created. This will orphan the COM object of the previous session, not allowing you to control it any longer.
In IE 7, this will usually manifest itself as a new top-level browser window; in IE 8, a new IExplore.exe process will be created, but it will usually (not always!) seamlessly attach it to the existing IE top-level frame window. Any browser automation framework that drives IE externally (as opposed to using a WebBrowser control) will run into these problems.
In order to work around that problem, we dictate that to work with IE, all zones must have the same Protected Mode setting. As long as it’s on for all zones, or off for all zones, we can prevent the transistions to different Protected Mode zones that would invalidate our browser object. It also allows users to continue to run with UAC turned on, and to run securely in the browser if they set Protected Mode “on” for all zones.
In earlier releases of the IE driver, if the user’s Protected Mode settings were not correctly set, we would launch IE, and the process would simply hang until the HTTP request timed out. This was suboptimal, as it gave no indication what needed to be set. Erring on the side of caution, we do not modify the user’s Protected Mode settings. Current versions, however check that the Protected Mode settings are properly set, and will return an error response if they are not.
There are two ways that we could simulate keyboard and mouse input. The first way, which is used in parts of webdriver, is to synthesize events on the DOM. This has a number of drawbacks, since each browser (and version of a browser) has its own unique quirks; to model each of these is a demanding task, and impossible to get completely right (for example, it’s hard to tell what window.selection should be and this is a read-only property on some browsers) The alternative approach is to synthesize keyboard and mouse input at the OS level, ideally without stealing focus from the user (who tends to be doing other things on their computer as long-running webdriver tests run)
The code for doing this is in interactions.cpp The key thing to note here is that we use PostMessages to push window events on to the message queue of the IE instance. Typing, in particular, is interesting: we only send the “keydown” and “keyup” messages. The “keypress” event is created if necessary by IE’s internal event processing. Because the key press event is not always generated (for example, not every character is printable, and if the default event bubbling is cancelled, listeners don’t see the key press event) we send a “probe” event in after the key down. Once we see that this has been processed, we know that the key press event is on the stack of events to be processed, and that it is safe to send the key up event. If this was not done, it is possible for events to fire in the wrong order, which is definitely sub-optimal.
Working On the InternetExplorerDriver
Currently, there are tests that will run for the InternetExplorerDriver in all languages (Java, C#, Python, and Ruby), so you should be able to test your changes to the native code no matter what language you’re comfortable working in from the client side. For working on the C++ code, you’ll need Visual Studio 2010 Professional or higher. Unfortunately, the C++ code of the driver uses ATL to ease the pain of working with COM objects, and ATL is not supplied with Visual C++ 2010 Express Edition. If you’re using Eclipse, the process for making and testing modifications is:
Edit the C++ code in VS.
Build the code to ensure that it compiles
Do a complete rebuild when you are ready to run a test. This will cause the created DLL to be copied to the right place to allow its use in Eclipse
Load Eclipse (or some other IDE, such as Idea)
Edit the SingleTestSuite so that it is usingDriver(IE)
Create a JUnit run configuration that uses the “webdriver-internet-explorer” project. If you don’t do this, the test won’t work at all, and there will be a somewhat cryptic error message on the console.
Once the basic setup is done, you can start working on the code pretty quickly. You can attach to the process you execute your code from using Visual Studio (from the Debug menu, select Attach to Process…).
5 - Selenium IDE
The Selenium IDE is a browser extension that records and plays back a user’s actions.
Selenium’s Integrated Development Environment (Selenium IDE)
is an easy-to-use browser extension that records a user’s
actions in the browser using existing Selenium commands,
with parameters defined by the context of each element.
It provides an excellent way to learn Selenium syntax.
It’s available for Google Chrome, Mozilla Firefox, and Microsoft Edge.
Selenium Manager is a command-line tool implemented in Rust that provides automated driver and browser management for Selenium. Selenium bindings use this tool by default, so you do not need to download it or add anything to your code or do anything else to use it.
Motivation
TL;DR:Selenium Manager is the official driver manager of the Selenium project, and it is shipped out of the box with every Selenium release.
Selenium uses the native support implemented by each browser to carry out the automation process. For this reason, Selenium users need to place a component called driver (chromedriver, geckodriver, msedgedriver, etc.) between the script using the Selenium API and the browser. For many years, managing these drivers was a manual process for Selenium users. This way, they had to download the required driver for a browser (chromedriver for Chrome, geckodriver for Firefox, etc.) and place it in the PATH or export the driver path as a system property (Java, JavaScript, etc.). But this process was cumbersome and led to maintainability issues.
Let’s consider an example. Imagine you manually downloaded the required chromedriver for driving your Chrome with Selenium. When you did this process, the stable version of Chrome was 113, so you downloaded chromedriver 113 and put it in your PATH. At that moment, your Selenium script executed correctly. But the problem is that Chrome is evergreen. This name refers to Chrome’s ability to upgrade automatically and silently to the next stable version when available. This feature is excellent for end-users but potentially dangerous for browser automation. Let’s go back to the example to discover it. Your local Chrome eventually updates to version 115. And that moment, your Selenium script is broken due to the incompatibility between the manually downloaded driver (113) and the Chrome version (115). Thus, your Selenium script fails with the following error message: “session not created: This version of ChromeDriver only supports Chrome version 113”.
This problem is the primary reason for the existence of the so-called driver managers (such as WebDriverManager for Java,
webdriver-manager for Python, webdriver-manager for JavaScript, WebDriverManager.Net for C#, and webdrivers for Ruby). All these projects were an inspiration and a clear sign that the community needed this feature to be built in Selenium. Thus, the Selenium project has created Selenium Manager, the official driver manager for Selenium, shipped out of the box with each Selenium release as of version 4.6.
Usage
TL;DR:Selenium Manager is used by the Selenium bindings when the drivers (chromedriver, geckodriver, etc.) are unavailable.
Driver management through Selenium Manager is opt-in for the Selenium bindings. Thus, users can continue managing their drivers manually (putting the driver in the PATH or using system properties) or rely on a third-party driver manager to do it automatically. Selenium Manager only operates as a fallback: if no driver is provided, Selenium Manager will come to the rescue.
Selenium Manager is a CLI (command line interface) tool implemented in Rust to allow cross-platform execution and compiled for Windows, Linux, and macOS. The Selenium Manager binaries are shipped with each Selenium release. This way, each Selenium binding language invokes Selenium Manager to carry out the automated driver and browser management explained in the following sections.
Automated driver management
TL;DR:Selenium Manager automatically discovers, downloads, and caches the drivers required by Selenium when these drivers are unavailable.
The primary feature of Selenium Manager is called automated driver management. Let’s consider an example to understand it. Suppose we want to driver Chrome with Selenium (see the doc about how to start a session with Selenium). Before the session begins, and when the driver is unavailable, Selenium Manager manages chromedriver for us. We use the term management for this feature (and not just download) since this process is broader and implies different steps:
Browser version discovery. Selenium Manager discovers the browser version (e.g., Chrome, Firefox, Edge) installed in the machine that executes Selenium. This step uses shell commands (e.g., google-chrome --version).
Driver version discovery. With the discovered browser version, the proper driver version is resolved. For this step, the online metadata/endpoints maintained by the browser vendors (e.g., chromedriver, geckodriver, or msedgedriver) are used.
Driver download. The driver URL is obtained with the resolved driver version; with that URL, the driver artifact is downloaded, uncompressed, and stored locally.
Driver cache. Uncompressed driver binaries are stored in a local cache folder (~/.cache/selenium). The next time the same driver is required, it will be used from there if the driver is already in the cache.
Automated browser management
TL;DR:Selenium Manager automatically discovers, downloads, and caches the browsers driven with Selenium (Chrome, Firefox, and Edge) when these browsers are not installed in the local system.
As of Selenium 4.11.0, Selenium Manager also implements automated browser management. With this feature, Selenium Manager allows us to discover, download, and cache the different browser releases, making them seamlessly available for Selenium. Internally, Selenium Manager uses an equivalent management procedure explained in the section before, but this time, for browser releases.
The browser automatically managed by Selenium Manager are:
Let’s consider again the typical example of driving Chrome with Selenium. And this time, suppose Chrome is not installed on the local machine when starting a new session). In that case, the current stable CfT release will be discovered, downloaded, and cached (in ~/.cache/selenium/chrome) by Selenium Manager.
But there is more. In addition to the stable browser version, Selenium Manager also allows downloading older browser versions (in the case of CfT, starting in version 113, the first version published as CfT). To set a browser version with Selenium, we use a browser option called browserVersion.
Let’s consider another simple example. Suppose we set browserVersion to 114 using Chrome options. In this case, Selenium Manager will check if Chrome 114 is already installed. If it is, it will be used. If not, Selenium Manager will manage (i.e., discover, download, and cache) CfT 114. And in either case, the chromedriver is also managed. Finally, Selenium will start Chrome to be driven programmatically, as usual.
But there is even more. In addition to fixed browser versions (e.g., 113, 114, 115, etc.), we can use the following labels for browserVersion:
stable: Current CfT version.
beta: Next version to stable.
dev: Version in development at this moment.
canary: Nightly build for developers.
esr: Extended Support Release (only for Firefox).
When these labels are specified, Selenium Manager first checks if a given browser is already installed (beta, dev, etc.), and when it is not detected, the browser is automatically managed.
Edge in Windows
Automated Edge management by Selenium Manager in Windows is different from other browsers. Both Chrome and Firefox (and Edge in macOS and Linux) are downloaded automatically to the local cache (~/.cache/selenium) by Selenium Manager. Nevertheless, the same cannot be done for Edge in Windows. The reason is that the Edge installer for Windows is distributed as a Microsoft Installer (MSI) file, designed to be executed with administrator rights. This way, when Edge is attempted to be installed with Selenium Manager in Windows with a non-administrator session, a warning message will be displayed by Selenium Manager as follows:
edge can only be installed in Windows with administrator permissions
Therefore, administrator permissions are required to install Edge in Windows automatically through Selenium Manager, and Edge is eventually installed in the usual program files folder (e.g., C:\Program Files (x86)\Microsoft\Edge).
Configuration
TL;DR:Selenium Manager should work silently and transparently for most users. Nevertheless, there are scenarios (e.g., to specify a custom cache path or setup globally a proxy) where custom configuration can be required.
Selenium Manager is a CLI tool. Therefore, under the hood, the Selenium bindings call Selenium Manager by invoking shell commands. Like any other CLI tool, arguments can be used to specify specific capabilities in Selenium Manager. The different arguments supported by Selenium Manager can be checked by running the following command:
$ ./selenium-manager --help
In addition to CLI arguments, Selenium Manager allows two additional mechanisms for configuration:
Configuration file. Selenium Manager uses a file called se-config.toml located in the Selenium cache (by default, at ~/.cache/selenium) for custom configuration values. This TOML file contains a key-value collection used for custom configuration.
Environmental variables. Each configuration key has its equivalence in environmental variables by converting each key name to uppercase, replacing the dash symbol (-) with an underscore (_), and adding the prefix SE_.
The configuration file is honored by Selenium Manager when it is present, and the corresponding CLI parameter is not specified. Besides, the environmental variables are used when neither of the previous options (CLI arguments and configuration file) is specified. In other words, the order of preference for Selenium Manager custom configuration is as follows:
CLI arguments.
Configuration file.
Environment variables.
Notice that the Selenium bindings use the CLI arguments to specify configuration values, which in turn, are defined in each binding using browser options.
The following table summarizes all the supported arguments supported by Selenium Manager and their correspondence key in the configuration file and environment variables.
CLI argument
Configuration file
Env variable
Description
--browser BROWSER
browser = "BROWSER"
SE_BROWSER=BROWSER
Browser name: chrome, firefox, edge, iexplorer, safari, safaritp, or webview2
--driver <DRIVER>
driver = "DRIVER"
SE_DRIVER=DRIVER
Driver name: chromedriver, geckodriver, msedgedriver, IEDriverServer, or safaridriver
--browser-version <BROWSER_VERSION>
browser-version = "BROWSER_VERSION"
SE_BROWSER_VERSION=BROWSER_VERSION
Major browser version (e.g., 105, 106, etc. Also: beta, dev, canary -or nightly-, and esr -in Firefox- are accepted)
--driver-version <DRIVER_VERSION>
driver-version = "DRIVER_VERSION"
SE_DRIVER_VERSION=DRIVER_VERSION
Driver version (e.g., 106.0.5249.61, 0.31.0, etc.)
--browser-path <BROWSER_PATH>
browser-path = "BROWSER_PATH"
SE_BROWSER_PATH=BROWSER_PATH
Browser path (absolute) for browser version detection (e.g., /usr/bin/google-chrome, /Applications/Google Chrome.app/Contents/MacOS/Google Chrome, C:\Program Files\Google\Chrome\Application\chrome.exe)
Operating system for drivers and browsers (i.e., windows, linux, or macos)
--arch <ARCH>
arch = "ARCH"
SE_ARCH=ARCH
System architecture for drivers and browsers (i.e., x32, x64, or arm64)
--proxy <PROXY>
proxy = "PROXY"
SE_PROXY=PROXY
HTTP proxy for network connection (e.g., myproxy:port, myuser:mypass@myproxy:port)
--timeout <TIMEOUT>
timeout = TIMEOUT
SE_TIMEOUT=TIMEOUT
Timeout for network requests (in seconds). Default: 300
--offline
offline = true
SE_OFFLINE=true
Offline mode (i.e., disabling network requests and downloads)
--force-browser-download
force-browser-download = true
SE_FORCE_BROWSER_DOWNLOAD=true
Force to download browser, e.g., when a browser is already installed in the system, but you want Selenium Manager to download and use it
--avoid-browser-download
avoid-browser-download = true
SE_AVOID_BROWSER_DOWNLOAD=true
Avoid to download browser, e.g., when a browser is supposed to be downloaded by Selenium Manager, but you prefer to avoid it
--debug
debug = true
SE_DEBUG=true
Display DEBUG messages
--trace
trace = true
SE_TRACE=true
Display TRACE messages
--cache-path <CACHE_PATH>
cache-path="CACHE_PATH"
SE_CACHE_PATH=CACHE_PATH
Local folder used to store downloaded assets (drivers and browsers), local metadata, and configuration file. See next section for details. Default: ~/.cache/selenium. For Windows paths in the TOML configuration file, double backslashes are required (e.g., C:\\custom\\cache).
--ttl <TTL>
ttl = TTL
SE_TTL=TTL
Time-to-live in seconds. See next section for details. Default: 3600 (1 hour)
In addition to the configuration keys specified in the table before, there are some special cases, namely:
Browser version. In addition to browser-version, we can use the specific configuration keys to specify custom versions per supported browser. This way, the keys chrome-version, firefox-version, edge-version, etc., are supported. The same applies to environment variables (i.e., SE_CHROME_VERSION, SE_FIREFOX_VERSION, SE_EDGE_VERSION, etc.).
Driver version. Following the same pattern, we can use chromedriver-version, geckodriver-version, msedgedriver-version, etc. (in the configuration file), and SE_CHROMEDRIVER_VERSION, SE_GECKODRIVER_VERSION, SE_MSEDGEDRIVER_VERSION, etc. (as environment variables).
Browser path. Following the same pattern, we can use chrome-path, firefox-path, edge-path, etc. (in the configuration file), and SE_CHROME_PATH, SE_FIREFOX_PATH, SE_EDGE_PATH, etc. (as environment variables). The Selenium bindings also allow to specify a custom location of the browser path using options, namely: Chrome), Edge, or Firefox.
Driver mirror. Following the same pattern, we can use chromedriver-mirror-url, geckodriver-mirror-url, msedgedriver-mirror-url, etc. (in the configuration file), and SE_CHROMEDRIVER_MIRROR_URL, SE_GECKODRIVER_MIRROR_URL, SE_MSEDGEDRIVER_MIRROR_URL, etc. (as environment variables).
Browser mirror. Following the same pattern, we can use chrome-mirror-url, firefox-mirror-url, edge-mirror-url, etc. (in the configuration file), and SE_CHROME_MIRROR_URL, SE_FIREFOX_MIRROR_URL, SE_EDGE_MIRROR_URL, etc. (as environment variables).
Caching
TL;DR:The drivers and browsers managed by Selenium Manager are stored in a local folder (~/.cache/selenium).
The cache in Selenium Manager is a local folder (~/.cache/selenium by default) in which the downloaded assets (drivers and browsers) are stored. For the sake of performance, when a driver or browser is already in the cache (i.e., there is a cache hint), Selenium Manager uses it from there.
In addition to the downloaded drivers and browsers, two additional files live in the cache’s root:
Configuration file (se-config.toml). This file is optional and, as explained in the previous section, allows to store custom configuration values for Selenium Manager. This file is maintained by the end-user and read by Selenium Manager.
Metadata file (se-metadata.json). This file contains versions discovered by Selenium Manger making network requests (e.g., using the CfT JSON endpoints) and the time-to-live (TTL) in which they are valid. Selenium Manager automatically maintains this file.
The TTL in Selenium Manager is inspired by the TTL for DNS, a well-known mechanism that refers to how long some values are cached before they are automatically refreshed. In the case of Selenium Manager, these values are the versions found by making network requests for driver and browser version discovery. By default, the TTL is 3600 seconds (i.e., 1 hour) and can be tuned using configuration values or disabled by setting this configuration value to 0.
The TTL mechanism is a way to improve the overall performance of Selenium. It is based on the fact that the discovered driver and browser versions (e.g., the proper chromedriver version for Chrome 115 is 115.0.5790.170) will likely remain the same in the short term. Therefore, the discovered versions are written in the metadata file and read from there instead of making the same consecutive network request. This way, during the driver version discovery (step 2 of the automated driver management process previously introduced), Selenium Manager first reads the file metadata. When a fresh resolution (i.e., a driver/browser version valid during a TTL) is found, that version is used (saving some time in making a new network request). If not found or the TTL has expired, a network request is made, and the result is stored in the metadata file.
Let’s consider an example. A Selenium binding asks Selenium Manager to resolve chromedriver. Selenium Manager detects that Chrome 115 is installed, so it makes a network request to the CfT endpoints to discover the proper chromedriver version (115.0.5790.170, at that moment). This version is stored in the metadata file and considered valid during the next hour (TTL). If Selenium Manager is asked to resolve chromedriver during that time (which is likely to happen in the execution of a test suite), the chromedriver version is discovered by reading the metadata file instead of making a new request to the CfT endpoints. After one hour, the chromedriver version stored in the cache will be considered as stale, and Selenium Manager will refresh it by making a new network request to the corresponding endpoint.
Selenium Manager includes two additional arguments two handle the cache, namely:
--clear-cache: To remove the cache folder.
--clear-metadata: To remove the metadata file.
Versioning
Selenium Manager follows the same versioning schema as Selenium. Nevertheless, we use the major version 0 for Selenium Manager releases because it is still in beta. For example, the Selenium Manager binaries shipped with Selenium 4.12.0 corresponds to version 0.4.12.
Getting Selenium Manager
For most users, direct interaction with Selenium Manager is not required since the Selenium bindings use it internally. Nevertheless, if you want to play with Selenium Manager or use it for your use case involving driver or browser management, you can get the Selenium Manager binaries in different ways:
From the Selenium repository. The Selenium Manager source code is stored in the main Selenium repo under the folder rust. Moreover, you can find the compiled versions for Windows, Linux, and macOS in the common folder of this repo.
From the build workflow. Selenium Manager is compiled using a GitHub Actions workflow. This workflow creates binaries for Windows, Linux, and macOS. You can download these binaries from these workflow executions.
From the cache. As of version 4.15.0 of the Selenium Java bindings, the Selenium Manager binary is extracted and copied to the cache folder. For instance, the Selenium Manager binary shipped with Selenium 4.15.0 is stored in the folder ~/.cache/selenium/manager/0.4.15).
Examples
Let’s consider a typical example: we want to manage chromedriver automatically. For that, we invoke Selenium Manager as follows (notice that the flag --debug is optional, but it helps us to understand what Selenium Manager is doing):
$ ./selenium-manager --browser chrome --debug
DEBUG chromedriver not found in PATH
DEBUG chrome detected at C:\Program Files\Google\Chrome\Application\chrome.exe
DEBUG Running command: wmic datafile where name='C:\\Program Files\\Google\\Chrome\\Application\\chrome.exe' get Version /value
DEBUG Output: "\r\r\n\r\r\nVersion=116.0.5845.111\r\r\n\r\r\n\r\r\n\r"
DEBUG Detected browser: chrome 116.0.5845.111
DEBUG Discovering versions from https://googlechromelabs.github.io/chrome-for-testing/known-good-versions-with-downloads.json
DEBUG Required driver: chromedriver 116.0.5845.96
DEBUG Downloading chromedriver 116.0.5845.96 from https://edgedl.me.gvt1.com/edgedl/chrome/chrome-for-testing/116.0.5845.96/win64/chromedriver-win64.zip
INFO Driver path: C:\Users\boni\.cache\selenium\chromedriver\win64\116.0.5845.96\chromedriver.exe
INFO Browser path: C:\Program Files\Google\Chrome\Application\chrome.exe
In this case, the local Chrome (in Windows) is detected by Selenium Manager. Then, using its version and the CfT endpoints, the proper chromedriver version (115, in this example) is downloaded to the local cache. Finally, Selenium Manager provides two results: i) the driver path (downloaded) and ii) the browser path (local).
Let’s consider another example. Now we want to use Chrome beta. Therefore, we invoke Selenium Manager specifying that version label as follows (notice that the CfT beta is discovered, downloaded, and stored in the local cache):
$ ./selenium-manager --browser chrome --browser-version beta --debug
DEBUG chromedriver not found in PATH
DEBUG chrome not found in PATH
DEBUG chrome beta not found in the system
DEBUG Discovering versions from https://googlechromelabs.github.io/chrome-for-testing/last-known-good-versions-with-downloads.json
DEBUG Required browser: chrome 117.0.5938.22
DEBUG Downloading chrome 117.0.5938.22 from https://edgedl.me.gvt1.com/edgedl/chrome/chrome-for-testing/117.0.5938.22/win64/chrome-win64.zip
DEBUG chrome 117.0.5938.22 has been downloaded at C:\Users\boni\.cache\selenium\chrome\win64\117.0.5938.22\chrome.exe
DEBUG Discovering versions from https://googlechromelabs.github.io/chrome-for-testing/known-good-versions-with-downloads.json
DEBUG Required driver: chromedriver 117.0.5938.22
DEBUG Downloading chromedriver 117.0.5938.22 from https://edgedl.me.gvt1.com/edgedl/chrome/chrome-for-testing/117.0.5938.22/win64/chromedriver-win64.zip
INFO Driver path: C:\Users\boni\.cache\selenium\chromedriver\win64\117.0.5938.22\chromedriver.exe
INFO Browser path: C:\Users\boni\.cache\selenium\chrome\win64\117.0.5938.22\chrome.exe
Selenium Grid
Selenium Manager allows you to configure the drivers automatically when setting up Selenium Grid. To that aim, you need to include the argument --selenium-manager true in the command to start Selenium Grid. For more details, visit the Selenium Grid starting page.
Moreover, Selenium Manager also allows managing Selenium Grid releases automatically. For that, the argument --grid is used as follows:
$ ./selenium-manager --grid
After this command, Selenium Manager discovers the latest version of Selenium Grid, storing the selenium-server.jar in the local cache.
Optionally, the argument --grid allows to specify a Selenium Grid version (--grid <GRID_VERSION>).
Known Limitations
Connectivity issues
Selenium Manager requests remote endpoints (like Chrome for Testing (CfT), among others) to discover and download drivers and browsers from online repositories. When this operation is done in a corporate environment with a proxy or firewall, it might lead to connectivity problems like the following:
error sending request for url (https://googlechromelabs.github.io/chrome-for-testing/known-good-versions-with-downloads.json)
error trying to connect: dns error: failed to lookup address information
error trying to connect: An existing connection was forcibly closed by the remote host. (os error 10054)
When that happens, consider the following solutions:
Use the proxy capabilities of Selenium (see documentation). Alternatively, use the environment variable SE_PROXY to set the proxy URL or use the configuration file (see configuration).
Review your network setup to enable the remote requests and downloads required by Selenium Manager.
Custom package managers
If you are using a Linux package manager (Anaconda, snap, etc) that requires a specific driver be used for your browsers,
you’ll need to either specify the
driver location,
the browser location,
or both, depending on the requirements.
Alternative architectures
Selenium supports all five architectures managed by Google’s Chrome for Testing, and all six drivers provided for Microsoft Edge.
Each release of the Selenium bindings comes with three separate Selenium Manager binaries — one for Linux, Windows, and Mac.
The Mac version supports both x64 and aarch64 (Intel and Apple).
The Windows version should work for both x86 and x64 (32-bit and 64-bit OS).
The Linux version has only been verified to work for x64.
Reasons for not supporting more architectures:
Neither Chrome for Testing nor Microsoft Edge supports additional architectures, so Selenium Manager would need to
manage something unofficial for it to work.
We currently build the binaries from existing GitHub actions runners, which do not support these architectures
Any additional architectures would get distributed with all Selenium releases, increasing the total build size
If you are running Linux on arm64/aarch64, 32-bit architecture, or a Raspberry Pi, Selenium Manager will not work for you.
The biggest issue for people is that they used to get custom-built drivers and put them on PATH and have them work.
Now that Selenium Manager is responsible for locating drivers on PATH, this approach no longer works, and users
need to use a Service class and set the location directly.
There are a number of advantages to having Selenium Manager look for drivers on PATH instead of managing that logic
in each of the bindings, so that’s currently a trade-off we are comfortable with.
However, as of Selenium 4.13.0, the Selenium bindings allow locating the Selenium Manager binary using an environment variable called SE_MANAGER_PATH. If this variable is set, the bindings will use its value as the Selenium Manager path in the local filesystem. This feature will allow users to provide a custom compilation of Selenium Manager, for instance, if the default binaries (compiled for Windows, Linux, and macOS) are incompatible with a given system (e.g., ARM64 in Linux).
Browser dependencies
When automatically managing browsers in Linux, Selenium Manager relies on the releases published by the browser vendors (i.e., Chrome, Firefox, and Edge). These releases are portable in most cases. Nevertheless, there might be cases in which existing libraries are required. In Linux, this problem might be experienced when trying to run Firefox, e.g., as follows:
libdbus-glib-1.so.2: cannot open shared object file: No such file or directory
Couldn't load XPCOM.
If that happens, the solution is to install that library, for instance, as follows:
sudo apt-get install libdbus-glib-1-2
A similar issue might happen when trying to execute Chrome for Testing in Linux:
error while loading shared libraries: libatk-1.0.so.0: cannot open shared object file: No such file or directory
In this case, the library to be installed is the following:
Some guidelines and recommendations on testing from the Selenium project.
A note on “Best Practices”: We’ve intentionally avoided the phrase “Best
Practices” in this documentation. No one approach works for all situations.
We prefer the idea of “Guidelines and Recommendations.” We encourage
you to read through these and thoughtfully decide what approaches
will work for you in your particular environment.
Functional testing is challenging to get right for many reasons.
As if application state, complexity, and dependencies do not make testing difficult enough,
dealing with browsers (especially with cross-browser incompatibilities)
makes writing good tests a challenge.
Selenium provides tools to make functional user interaction easier,
but does not help you write well-architected test suites.
In this chapter, we offer advice, guidelines, and recommendations
on how to approach functional web page automation.
This chapter records software design patterns popular
amongst many of the users of Selenium
that have proven successful over the years.
Over time, projects tend to accumulate large numbers of tests. As the total number of tests increases,
it becomes harder to make changes to the codebase — a single “simple” change
may cause numerous tests to fail, even though the application still works properly.
Sometimes these problems are unavoidable, but when they do occur you want to be up
and running again as quickly as possible. The following design patterns and strategies
have been used before with WebDriver to help make tests easier to write and maintain.
They may help you too.
DomainDrivenDesign: Express your tests in the language of the end-user of the app.
PageObjects: A simple abstraction of the UI of your web app.
LoadableComponent: Modeling PageObjects as components.
BotStyleTests: Using a command-based approach to automating tests, rather than the object-based approach that PageObjects encourage
Loadable Component
What Is It?
The LoadableComponent is a base class that aims to make writing PageObjects less painful.
It does this by providing a standard way of ensuring that pages are loaded and providing
hooks to make debugging the failure of a page to load easier. You can use it to help
reduce the amount of boilerplate code in your tests, which in turn makes maintaining
your tests less tiresome.
There is currently an implementation in Java that ships as part of Selenium 2, but the approach used is simple enough to be implemented in any language.
Simple Usage
As an example of a UI that we’d like to model, take a look at
the new issue page. From the point of view of a test author,
this offers the service of being able to file a new issue. A basic Page Object would look like:
In order to turn this into a LoadableComponent, all we need to do is to set that as the base type:
publicclassEditIssueextendsLoadableComponent<EditIssue>{// rest of class ignored for now
}
This signature looks a little unusual, but all it means is that this class
represents a LoadableComponent that loads the EditIssue page.
By extending this base class, we need to implement two new methods:
@Overrideprotectedvoidload(){driver.get("https://github.com/SeleniumHQ/selenium/issues/new");}@OverrideprotectedvoidisLoaded()throwsError{Stringurl=driver.getCurrentUrl();assertTrue("Not on the issue entry page: "+url,url.endsWith("/new"));}
The load method is used to navigate to the page, whilst the isLoaded method is used to
determine whether we are on the right page. Although the method looks like it should return
a boolean, instead it performs a series of assertions using JUnit’s Assert class.
There can be as few or as many assertions as you like. By using these assertions
it’s possible to give users of the class clear information that can be used to debug tests.
With a little rework, our PageObject looks like:
packagecom.example.webdriver;importorg.openqa.selenium.By;importorg.openqa.selenium.WebDriver;importorg.openqa.selenium.WebElement;importorg.openqa.selenium.support.FindBy;importorg.openqa.selenium.support.PageFactory;import staticjunit.framework.Assert.assertTrue;publicclassEditIssueextendsLoadableComponent<EditIssue>{privatefinalWebDriverdriver;// By default the PageFactory will locate elements with the same name or id
// as the field. Since the summary element has a name attribute of "summary"
// we don't need any additional annotations.
privateWebElementsummary;// Same with the submit element, which has the ID "submit"
privateWebElementsubmit;// But we'd prefer a different name in our code than "comment", so we use the
// FindBy annotation to tell the PageFactory how to locate the element.
@FindBy(name="comment")privateWebElementdescription;publicEditIssue(WebDriverdriver){this.driver=driver;// This call sets the WebElement fields.
PageFactory.initElements(driver,this);}@Overrideprotectedvoidload(){driver.get("https://github.com/SeleniumHQ/selenium/issues/new");}@OverrideprotectedvoidisLoaded()throwsError{Stringurl=driver.getCurrentUrl();assertTrue("Not on the issue entry page: "+url,url.endsWith("/new"));}publicvoidsetSummary(StringissueSummary){clearAndType(summary,issueSummary);}publicvoidenterDescription(StringissueDescription){clearAndType(description,issueDescription);}publicIssueListsubmit(){submit.click();returnnewIssueList(driver);}privatevoidclearAndType(WebElementfield,Stringtext){field.clear();field.sendKeys(text);}}
That doesn’t seem to have bought us much, right? One thing it has done is encapsulate
the information about how to navigate to the page into the page itself, meaning that
this information’s not scattered through the code base. It also means that we can do this in our tests:
EditIssuepage=newEditIssue(driver).get();
This call will cause the driver to navigate to the page if that’s necessary.
Nested Components
LoadableComponents start to become more useful when they are used in conjunction
with other LoadableComponents. Using our example, we could view the “edit issue”
page as a component within a project’s website (after all, we access it via a tab
on that site). You also need to be logged in to file an issue. We could model this
as a tree of nested components:
+ ProjectPage
+---+ SecuredPage
+---+ EditIssue
What would this look like in code? For a start, each logical component would
have its own class. The “load” method in each of them would “get” the parent.
The end result, in addition to the EditIssue class above is:
packagecom.example.webdriver;importorg.openqa.selenium.By;importorg.openqa.selenium.NoSuchElementException;importorg.openqa.selenium.WebDriver;importorg.openqa.selenium.WebElement;import staticorg.junit.Assert.fail;publicclassSecuredPageextendsLoadableComponent<SecuredPage>{privatefinalWebDriverdriver;privatefinalLoadableComponent<?>parent;privatefinalStringusername;privatefinalStringpassword;publicSecuredPage(WebDriverdriver,LoadableComponent<?>parent,Stringusername,Stringpassword){this.driver=driver;this.parent=parent;this.username=username;this.password=password;}@Overrideprotectedvoidload(){parent.get();StringoriginalUrl=driver.getCurrentUrl();// Sign in
driver.get("https://www.google.com/accounts/ServiceLogin?service=code");driver.findElement(By.name("Email")).sendKeys(username);WebElementpasswordField=driver.findElement(By.name("Passwd"));passwordField.sendKeys(password);passwordField.submit();// Now return to the original URL
driver.get(originalUrl);}@OverrideprotectedvoidisLoaded()throwsError{// If you're signed in, you have the option of picking a different login.
// Let's check for the presence of that.
try{WebElementdiv=driver.findElement(By.id("multilogin-dropdown"));}catch(NoSuchElementExceptione){fail("Cannot locate user name link");}}}
This shows that the components are all “nested” within each other.
A call to get() in EditIssue will cause all its dependencies to
load too. The example usage:
publicclassFooTest{privateEditIssueeditIssue;@BeforepublicvoidprepareComponents(){WebDriverdriver=newFirefoxDriver();ProjectPageproject=newProjectPage(driver,"selenium");SecuredPagesecuredPage=newSecuredPage(driver,project,"example","top secret");editIssue=newEditIssue(driver,securedPage);}@TestpublicvoiddemonstrateNestedLoadableComponents(){editIssue.get();editIssue.setSummary("Summary");editIssue.enterDescription("This is an example");}}
If you’re using a library such as Guiceberry in your tests,
the preamble of setting up the PageObjects can be omitted leading to nice, clear, readable tests.
Although PageObjects are a useful way of reducing duplication in your tests,
it’s not always a pattern that teams feel comfortable following.
An alternative approach is to follow a more “command-like” style of testing.
A “bot” is an action-oriented abstraction over the raw Selenium APIs.
This means that if you find that commands aren’t doing the Right Thing
for your app, it’s easy to change them. As an example:
publicclassActionBot{privatefinalWebDriverdriver;publicActionBot(WebDriverdriver){this.driver=driver;}publicvoidclick(Bylocator){driver.findElement(locator).click();}publicvoidsubmit(Bylocator){driver.findElement(locator).submit();}/**
* Type something into an input field. WebDriver doesn't normally clear these
* before typing, so this method does that first. It also sends a return key
* to move the focus out of the element.
*/publicvoidtype(Bylocator,Stringtext){WebElementelement=driver.findElement(locator);element.clear();element.sendKeys(text+"\n");}}
Once these abstractions have been built and duplication in your tests identified, it’s possible to layer PageObjects on top of bots.
7.2 - Overview of Test Automation
First, start by asking yourself whether or not you really need to use a browser.
Odds are that, at some point, if you are working on a complex web application,
you will need to open a browser and actually test it.
Functional end-user tests such as Selenium tests are expensive to run, however.
Furthermore, they typically require substantial infrastructure
to be in place to be run effectively.
It is a good rule to always ask yourself if what you want to test
can be done using more lightweight test approaches such as unit tests
or with a lower-level approach.
Once you have made the determination that you are in the web browser testing business,
and you have your Selenium environment ready to begin writing tests,
you will generally perform some combination of three steps:
Set up the data
Perform a discrete set of actions
Evaluate the results
You will want to keep these steps as short as possible;
one or two operations should be enough most of the time.
Browser automation has the reputation of being “flaky”,
but in reality, that is because users frequently demand too much of it.
In later chapters, we will return to techniques you can use
to mitigate apparent intermittent problems in tests,
in particular on how to overcome race conditions
between the browser and WebDriver.
By keeping your tests short
and using the web browser only when you have absolutely no alternative,
you can have many tests with minimal flake.
A distinct advantage of Selenium tests
is their inherent ability to test all components of the application,
from backend to frontend, from a user’s perspective.
So in other words, whilst functional tests may be expensive to run,
they also encompass large business-critical portions at one time.
Testing requirements
As mentioned before, Selenium tests can be expensive to run.
To what extent depends on the browser you are running the tests against,
but historically browsers’ behaviour has varied so much that it has often
been a stated goal to cross-test against multiple browsers.
Selenium allows you to run the same instructions against multiple browsers
on multiple operating systems,
but the enumeration of all the possible browsers,
their different versions, and the many operating systems they run on
will quickly become a non-trivial undertaking.
Let’s start with an example
Larry has written a web site which allows users to order their
custom unicorns.
The general workflow (what we will call the “happy path”) is something
like this:
Create an account
Configure the unicorn
Add it to the shopping cart
Check out and pay
Give feedback about the unicorn
It would be tempting to write one grand Selenium script
to perform all these operations–many will try.
Resist the temptation!
Doing so will result in a test that
a) takes a long time,
b) will be subject to some common issues around page rendering timing issues, and
c) is such that if it fails,
it will not give you a concise, “glanceable” method for diagnosing what went wrong.
The preferred strategy for testing this scenario would be
to break it down to a series of independent, speedy tests,
each of which has one “reason” to exist.
Let us pretend you want to test the second step:
Configuring your unicorn.
It will perform the following actions:
Create an account
Configure a unicorn
Note that we are skipping the rest of these steps,
we will test the rest of the workflow in other small, discrete test cases
after we are done with this one.
To start, you need to create an account.
Here you have some choices to make:
Do you want to use an existing account?
Do you want to create a new account?
Are there any special properties of such a user that need to be
taken into account before configuration begins?
Regardless of how you answer this question,
the solution is to make it part of the “set up the data” portion of the test.
If Larry has exposed an API that enables you (or anyone)
to create and update user accounts,
be sure to use that to answer this question.
If possible, you want to launch the browser only after you have a user “in hand”,
whose credentials you can just log in with.
If each test for each workflow begins with the creation of a user account,
many seconds will be added to the execution of each test.
Calling an API and talking to a database are quick,
“headless” operations that don’t require the expensive process of
opening a browser, navigating to the right pages,
clicking and waiting for the forms to be submitted, etc.
Ideally, you can address this set-up phase in one line of code,
which will execute before any browser is launched:
// Create a user who has read-only permissions--they can configure a unicorn,
// but they do not have payment information set up, nor do they have
// administrative privileges. At the time the user is created, its email
// address and password are randomly generated--you don't even need to
// know them.
Useruser=UserFactory.createCommonUser();//This method is defined elsewhere.
// Log in as this user.
// Logging in on this site takes you to your personal "My Account" page, so the
// AccountPage object is returned by the loginAs method, allowing you to then
// perform actions from the AccountPage.
AccountPageaccountPage=loginAs(user.getEmail(),user.getPassword());
# Create a user who has read-only permissions--they can configure a unicorn,# but they do not have payment information set up, nor do they have# administrative privileges. At the time the user is created, its email# address and password are randomly generated--you don't even need to# know them.user=user_factory.create_common_user()#This method is defined elsewhere.# Log in as this user.# Logging in on this site takes you to your personal "My Account" page, so the# AccountPage object is returned by the loginAs method, allowing you to then# perform actions from the AccountPage.account_page=login_as(user.get_email(),user.get_password())
// Create a user who has read-only permissions--they can configure a unicorn,// but they do not have payment information set up, nor do they have// administrative privileges. At the time the user is created, its email// address and password are randomly generated--you don't even need to// know them.Useruser=UserFactory.CreateCommonUser();//This method is defined elsewhere.// Log in as this user.// Logging in on this site takes you to your personal "My Account" page, so the// AccountPage object is returned by the loginAs method, allowing you to then// perform actions from the AccountPage.AccountPageaccountPage=LoginAs(user.Email,user.Password);
# Create a user who has read-only permissions--they can configure a unicorn,# but they do not have payment information set up, nor do they have# administrative privileges. At the time the user is created, its email# address and password are randomly generated--you don't even need to# know them.user=UserFactory.create_common_user#This method is defined elsewhere.# Log in as this user.# Logging in on this site takes you to your personal "My Account" page, so the# AccountPage object is returned by the loginAs method, allowing you to then# perform actions from the AccountPage.account_page=login_as(user.email,user.password)
// Create a user who has read-only permissions--they can configure a unicorn,
// but they do not have payment information set up, nor do they have
// administrative privileges. At the time the user is created, its email
// address and password are randomly generated--you don't even need to
// know them.
varuser=userFactory.createCommonUser();//This method is defined elsewhere.
// Log in as this user.
// Logging in on this site takes you to your personal "My Account" page, so the
// AccountPage object is returned by the loginAs method, allowing you to then
// perform actions from the AccountPage.
varaccountPage=loginAs(user.email,user.password);
// Create a user who has read-only permissions--they can configure a unicorn,
// but they do not have payment information set up, nor do they have
// administrative privileges. At the time the user is created, its email
// address and password are randomly generated--you don't even need to
// know them.
valuser=UserFactory.createCommonUser()//This method is defined elsewhere.
// Log in as this user.
// Logging in on this site takes you to your personal "My Account" page, so the
// AccountPage object is returned by the loginAs method, allowing you to then
// perform actions from the AccountPage.
valaccountPage=loginAs(user.getEmail(),user.getPassword())
As you can imagine, the UserFactory can be extended
to provide methods such as createAdminUser(), and createUserWithPayment().
The point is, these two lines of code do not distract you from the ultimate purpose of this test:
configuring a unicorn.
The intricacies of the Page Object model
will be discussed in later chapters, but we will introduce the concept here:
Your tests should be composed of actions,
performed from the user’s point of view,
within the context of pages in the site.
These pages are stored as objects,
which will contain specific information about how the web page is composed
and how actions are performed–
very little of which should concern you as a tester.
What kind of unicorn do you want?
You might want pink, but not necessarily.
Purple has been quite popular lately.
Does she need sunglasses? Star tattoos?
These choices, while difficult, are your primary concern as a tester–
you need to ensure that your order fulfillment center
sends out the right unicorn to the right person,
and that starts with these choices.
Notice that nowhere in that paragraph do we talk about buttons,
fields, drop-downs, radio buttons, or web forms.
Neither should your tests!
You want to write your code like the user trying to solve their problem.
Here is one way of doing this (continuing from the previous example):
// The Unicorn is a top-level Object--it has attributes, which are set here.
// This only stores the values; it does not fill out any web forms or interact
// with the browser in any way.
Unicornsparkles=newUnicorn("Sparkles",UnicornColors.PURPLE,UnicornAccessories.SUNGLASSES,UnicornAdornments.STAR_TATTOOS);// Since we are already "on" the account page, we have to use it to get to the
// actual place where you configure unicorns. Calling the "Add Unicorn" method
// takes us there.
AddUnicornPageaddUnicornPage=accountPage.addUnicorn();// Now that we're on the AddUnicornPage, we will pass the "sparkles" object to
// its createUnicorn() method. This method will take Sparkles' attributes,
// fill out the form, and click submit.
UnicornConfirmationPageunicornConfirmationPage=addUnicornPage.createUnicorn(sparkles);
# The Unicorn is a top-level Object--it has attributes, which are set here.# This only stores the values; it does not fill out any web forms or interact# with the browser in any way.sparkles=Unicorn("Sparkles",UnicornColors.PURPLE,UnicornAccessories.SUNGLASSES,UnicornAdornments.STAR_TATTOOS)# Since we're already "on" the account page, we have to use it to get to the# actual place where you configure unicorns. Calling the "Add Unicorn" method# takes us there.add_unicorn_page=account_page.add_unicorn()# Now that we're on the AddUnicornPage, we will pass the "sparkles" object to# its createUnicorn() method. This method will take Sparkles' attributes,# fill out the form, and click submit.unicorn_confirmation_page=add_unicorn_page.create_unicorn(sparkles)
// The Unicorn is a top-level Object--it has attributes, which are set here. // This only stores the values; it does not fill out any web forms or interact// with the browser in any way.Unicornsparkles=newUnicorn("Sparkles",UnicornColors.Purple,UnicornAccessories.Sunglasses,UnicornAdornments.StarTattoos);// Since we are already "on" the account page, we have to use it to get to the// actual place where you configure unicorns. Calling the "Add Unicorn" method// takes us there.AddUnicornPageaddUnicornPage=accountPage.AddUnicorn();// Now that we're on the AddUnicornPage, we will pass the "sparkles" object to// its createUnicorn() method. This method will take Sparkles' attributes,// fill out the form, and click submit.UnicornConfirmationPageunicornConfirmationPage=addUnicornPage.CreateUnicorn(sparkles);
# The Unicorn is a top-level Object--it has attributes, which are set here.# This only stores the values; it does not fill out any web forms or interact# with the browser in any way.sparkles=Unicorn.new('Sparkles',UnicornColors.PURPLE,UnicornAccessories.SUNGLASSES,UnicornAdornments.STAR_TATTOOS)# Since we're already "on" the account page, we have to use it to get to the# actual place where you configure unicorns. Calling the "Add Unicorn" method# takes us there.add_unicorn_page=account_page.add_unicorn# Now that we're on the AddUnicornPage, we will pass the "sparkles" object to# its createUnicorn() method. This method will take Sparkles' attributes,# fill out the form, and click submit.unicorn_confirmation_page=add_unicorn_page.create_unicorn(sparkles)
// The Unicorn is a top-level Object--it has attributes, which are set here.
// This only stores the values; it does not fill out any web forms or interact
// with the browser in any way.
varsparkles=newUnicorn("Sparkles",UnicornColors.PURPLE,UnicornAccessories.SUNGLASSES,UnicornAdornments.STAR_TATTOOS);// Since we are already "on" the account page, we have to use it to get to the
// actual place where you configure unicorns. Calling the "Add Unicorn" method
// takes us there.
varaddUnicornPage=accountPage.addUnicorn();// Now that we're on the AddUnicornPage, we will pass the "sparkles" object to
// its createUnicorn() method. This method will take Sparkles' attributes,
// fill out the form, and click submit.
varunicornConfirmationPage=addUnicornPage.createUnicorn(sparkles);
// The Unicorn is a top-level Object--it has attributes, which are set here.
// This only stores the values; it does not fill out any web forms or interact
// with the browser in any way.
valsparkles=Unicorn("Sparkles",UnicornColors.PURPLE,UnicornAccessories.SUNGLASSES,UnicornAdornments.STAR_TATTOOS)// Since we are already "on" the account page, we have to use it to get to the
// actual place where you configure unicorns. Calling the "Add Unicorn" method
// takes us there.
valaddUnicornPage=accountPage.addUnicorn()// Now that we're on the AddUnicornPage, we will pass the "sparkles" object to
// its createUnicorn() method. This method will take Sparkles' attributes,
// fill out the form, and click submit.
unicornConfirmationPage=addUnicornPage.createUnicorn(sparkles)
Now that you have configured your unicorn,
you need to move on to step 3: making sure it actually worked.
// The exists() method from UnicornConfirmationPage will take the Sparkles
// object--a specification of the attributes you want to see, and compare
// them with the fields on the page.
Assert.assertTrue("Sparkles should have been created, with all attributes intact",unicornConfirmationPage.exists(sparkles));
# The exists() method from UnicornConfirmationPage will take the Sparkles# object--a specification of the attributes you want to see, and compare# them with the fields on the page.assertunicorn_confirmation_page.exists(sparkles),"Sparkles should have been created, with all attributes intact"
// The exists() method from UnicornConfirmationPage will take the Sparkles // object--a specification of the attributes you want to see, and compare// them with the fields on the page.Assert.True(unicornConfirmationPage.Exists(sparkles),"Sparkles should have been created, with all attributes intact");
# The exists() method from UnicornConfirmationPage will take the Sparkles# object--a specification of the attributes you want to see, and compare# them with the fields on the page.expect(unicorn_confirmation_page.exists?(sparkles)).tobe,'Sparkles should have been created, with all attributes intact'
// The exists() method from UnicornConfirmationPage will take the Sparkles
// object--a specification of the attributes you want to see, and compare
// them with the fields on the page.
assert(unicornConfirmationPage.exists(sparkles),"Sparkles should have been created, with all attributes intact");
// The exists() method from UnicornConfirmationPage will take the Sparkles
// object--a specification of the attributes you want to see, and compare
// them with the fields on the page.
assertTrue("Sparkles should have been created, with all attributes intact",unicornConfirmationPage.exists(sparkles))
Note that the tester still has not done anything but talk about unicorns in this code–
no buttons, no locators, no browser controls.
This method of modelling the application
allows you to keep these test-level commands in place and unchanging,
even if Larry decides next week that he no longer likes Ruby-on-Rails
and decides to re-implement the entire site
in the latest Haskell bindings with a Fortran front-end.
Your page objects will require some small maintenance in order to
conform to the site redesign,
but these tests will remain the same.
Taking this basic design,
you will want to keep going through your workflows with the fewest browser-facing steps possible.
Your next workflow will involve adding a unicorn to the shopping cart.
You will probably want many iterations of this test in order to make sure the cart is keeping its state properly:
Is there more than one unicorn in the cart before you start?
How many can fit in the shopping cart?
If you create more than one with the same name and/or features, will it break?
Will it only keep the existing one or will it add another?
Each time you move through the workflow,
you want to try to avoid having to create an account,
login as the user, and configure the unicorn.
Ideally, you will be able to create an account
and pre-configure a unicorn via the API or database.
Then all you have to do is log in as the user, locate Sparkles,
and add her to the cart.
To automate or not to automate?
Is automation always advantageous? When should one decide to automate test
cases?
It is not always advantageous to automate test cases. There are times when
manual testing may be more appropriate. For instance, if the application’s user
interface will change considerably in the near future, then any automation
might need to be rewritten anyway. Also, sometimes there simply is not enough
time to build test automation. For the short term, manual testing may be more
effective. If an application has a very tight deadline, there is currently no
test automation available, and it’s imperative that the testing gets done within
that time frame, then manual testing is the best solution.
7.3 - Types of Testing
Acceptance testing
This type of testing is done to determine if a feature or system
meets the customer expectations and requirements.
This type of testing generally involves the customer’s
cooperation or feedback, being a validation activity that
answers the question:
Are we building the right product?
For web applications, the automation of this testing can be done
directly with Selenium by simulating user expected behaviour.
This simulation could be done by record/playback or through the
different supported languages as explained in this documentation.
Note: Acceptance testing is a subtype of functional testing,
which some people might also refer to.
Functional testing
This type of testing is done to determine if a
feature or system functions properly without issues. It checks
the system at different levels to ensure that all scenarios
are covered and that the system does what it’s
supposed to do. It’s a verification activity that
answers the question:
Are we building the product right?
This generally includes: the tests work without errors
(404, exceptions…), in a usable way (correct redirections), in an accessible way and matching its specifications
(see acceptance testing above).
For web applications, the automation of this testing can be
done directly with Selenium by simulating expected returns. This simulation could be done by record/playback or through
the different supported languages as explained in this documentation.
Integration Tests
Integration tests verify the interactions between different components or modules of a system. Several modules are together tested. The purpose of Integration tests is to make sure that all modules integrate and work together as expected. Automated integration tests help ensure that these interactions work as expected and that integrated components function properly together.
For example, Testing the flow of placing the order for an item in an ecommerce website along with payment.
System Tests
System Testing is a complete fully integrated product Testing. It is an end-to-end testing where in testing environment is similar to the production environment. Here, we navigate through all the features of the software and test if the end business / end feature works. We just test the end feature and don’t check for data flow or do functional testing and all.
For example, Testing the end to end flow from login to placing and order and rechecking the order in My Orders page and logoff from an ecommerce website.
Performance testing
As its name indicates, performance tests are done
to measure how well an application is performing.
There are two main sub-types for performance testing:
Load testing
Load testing is done to verify how well the
application works under different defined loads
(usually a particular number of users connected at once).
Stress testing
Stress testing is done to verify how well the
application works under stress (or above the maximum supported load).
Generally, performance tests are done by executing some
Selenium written tests simulating different users
hitting a particular function on the web app and
retrieving some meaningful measurements.
This is generally done by other tools that retrieve the metrics.
One such tool is JMeter.
For a web application, details to measure include
throughput, latency, data loss, individual component loading times…
Note 1: All browsers have a performance tab in their
developers’ tools section (accessible by pressing F12)
Note 2: is a subtype of non-functional testing
as this is generally measured per system and not per function/feature.
Regression testing
This testing is generally done after a change, fix or feature addition.
To ensure that the change has not broken any of the existing
functionality, some already executed tests are executed again.
The set of re-executed tests can be full or partial
and can include several different types, depending
on the application and development team.
Test driven development (TDD)
Rather than a test type per se, TDD is an iterative
development methodology in which tests drive the design of a feature.
Each cycle starts by creating a set of unit tests that
the feature should eventually pass (they should fail their first time executed).
After this, development takes place to make the tests pass.
The tests are executed again, starting another cycle
and this process continues until all tests are passing.
This aims to speed up the development of an application
based on the fact that defects are less costly the earlier they are found.
Behavior-driven development (BDD)
BDD is also an iterative development methodology
based on the above TDD, in which the goal is to involve
all the parties in the development of an application.
Each cycle starts by creating some specifications
(which should fail). Then create the failing unit
tests (which should also fail) and then do the development.
This cycle is repeated until all types of tests are passing.
In order to do so, a specification language is
used. It should be understandable by all parties and
simple, standard and explicit.
Most tools use Gherkin as this language.
The goal is to be able to detect even more errors
than TDD, by targeting potential acceptance errors
too and make communication between parties smoother.
A set of tools are currently available
to write the specifications and match them with code functions,
such as Cucumber or SpecFlow.
A set of tools are built on top of Selenium to make this process
even faster by directly transforming the BDD specifications into
executable code.
Some of these are JBehave, Capybara and Robot Framework.
7.4 - Encouraged behaviors
Some guidelines and recommendations on testing from the Selenium project.
A note on “Best Practices”: We’ve intentionally avoided the phrase “Best
Practices” in this documentation. No one approach works for all situations.
We prefer the idea of “Guidelines and Recommendations”. We encourage
you to read through these and thoughtfully decide what approaches
will work for you in your particular environment.
Functional testing is difficult to get right for many reasons.
As if application state, complexity, and dependencies do not make testing difficult enough,
dealing with browsers (especially with cross-browser incompatibilities)
makes writing good tests a challenge.
Selenium provides tools to make functional user interaction easier,
but does not help you write well-architected test suites.
In this chapter we offer advice, guidelines, and recommendations
on how to approach functional web page automation.
This chapter records software design patterns popular
amongst many of the users of Selenium
that have proven successful over the years.
7.4.1 - Page object models
Note: this page has merged contents from multiple sources, including
the Selenium wiki
Overview
Within your web app’s UI, there are areas where your tests interact with.
A Page Object only models these as objects within the test code.
This reduces the amount of duplicated code and means that if the UI changes,
the fix needs only to be applied in one place.
Page Object is a Design Pattern that has become popular in test automation for
enhancing test maintenance and reducing code duplication. A page object is an
object-oriented class that serves as an interface to a page of your AUT. The
tests then use the methods of this page object class whenever they need to
interact with the UI of that page. The benefit is that if the UI changes for
the page, the tests themselves don’t need to change, only the code within the
page object needs to change. Subsequently, all changes to support that new UI
are located in one place.
Advantages
There is a clean separation between the test code and page-specific code, such as
locators (or their use if you’re using a UI Map) and layout.
There is a single repository for the services or operations the page offers
rather than having these services scattered throughout the tests.
In both cases, this allows any modifications required due to UI changes to all
be made in one place. Helpful information on this technique can be found on
numerous blogs as this ‘test design pattern’ is becoming widely used. We
encourage readers who wish to know more to search the internet for blogs
on this subject. Many have written on this design pattern and can provide
helpful tips beyond the scope of this user guide. To get you started,
we’ll illustrate page objects with a simple example.
Examples
First, consider an example, typical of test automation, that does not use a
page object:
/***
* Tests login feature
*/publicclassLogin{publicvoidtestLogin(){// fill login data on sign-in page
driver.findElement(By.name("user_name")).sendKeys("userName");driver.findElement(By.name("password")).sendKeys("my supersecret password");driver.findElement(By.name("sign-in")).click();// verify h1 tag is "Hello userName" after login
driver.findElement(By.tagName("h1")).isDisplayed();assertThat(driver.findElement(By.tagName("h1")).getText(),is("Hello userName"));}}
There are two problems with this approach.
There is no separation between the test method and the AUT’s locators (IDs in
this example); both are intertwined in a single method. If the AUT’s UI changes
its identifiers, layout, or how a login is input and processed, the test itself
must change.
The ID-locators would be spread in multiple tests, in all tests that had to
use this login page.
Applying the page object techniques, this example could be rewritten like this
in the following example of a page object for a Sign-in page.
importorg.openqa.selenium.By;importorg.openqa.selenium.WebDriver;/**
* Page Object encapsulates the Sign-in page.
*/publicclassSignInPage{protectedWebDriverdriver;// <input name="user_name" type="text" value="">
privateByusernameBy=By.name("user_name");// <input name="password" type="password" value="">
privateBypasswordBy=By.name("password");// <input name="sign_in" type="submit" value="SignIn">
privateBysigninBy=By.name("sign_in");publicSignInPage(WebDriverdriver){this.driver=driver;if(!driver.getTitle().equals("Sign In Page")){thrownewIllegalStateException("This is not Sign In Page,"+" current page is: "+driver.getCurrentUrl());}}/**
* Login as valid user
*
* @param userName
* @param password
* @return HomePage object
*/publicHomePageloginValidUser(StringuserName,Stringpassword){driver.findElement(usernameBy).sendKeys(userName);driver.findElement(passwordBy).sendKeys(password);driver.findElement(signinBy).click();returnnewHomePage(driver);}}
and page object for a Home page could look like this.
importorg.openqa.selenium.By;importorg.openqa.selenium.WebDriver;/**
* Page Object encapsulates the Home Page
*/publicclassHomePage{protectedWebDriverdriver;// <h1>Hello userName</h1>
privateBymessageBy=By.tagName("h1");publicHomePage(WebDriverdriver){this.driver=driver;if(!driver.getTitle().equals("Home Page of logged in user")){thrownewIllegalStateException("This is not Home Page of logged in user,"+" current page is: "+driver.getCurrentUrl());}}/**
* Get message (h1 tag)
*
* @return String message text
*/publicStringgetMessageText(){returndriver.findElement(messageBy).getText();}publicHomePagemanageProfile(){// Page encapsulation to manage profile functionality
returnnewHomePage(driver);}/* More methods offering the services represented by Home Page
of Logged User. These methods in turn might return more Page Objects
for example click on Compose mail button could return ComposeMail class object */}
So now, the login test would use these two page objects as follows.
There is a lot of flexibility in how the page objects may be designed, but
there are a few basic rules for getting the desired maintainability of your
test code.
Assertions in Page Objects
Page objects themselves should never make verifications or assertions. This is
part of your test and should always be within the test’s code, never in an page
object. The page object will contain the representation of the page, and the
services the page provides via methods but no code related to what is being
tested should be within the page object.
There is one, single, verification which can, and should, be within the page
object and that is to verify that the page, and possibly critical elements on
the page, were loaded correctly. This verification should be done while
instantiating the page object. In the examples above, both the SignInPage and
HomePage constructors check that the expected page is available and ready for
requests from the test.
Page Component Objects
A page object does not necessarily need to represent all the parts of a
page itself. This was noted by Martin Fowler in the early days, while first coining the term “panel objects”.
The same principles used for page objects can be used to
create “Page Component Objects”, as it was later called, that represent discrete chunks of the
page and can be included in page objects. These component objects can
provide references to the elements inside those discrete chunks, and
methods to leverage the functionality or behavior provided by them.
For example, a Products page has multiple products.
<!-- Inventory Item --><divclass="inventory_item"><divclass="inventory_item_name">Backpack</div><divclass="pricebar"><divclass="inventory_item_price">$29.99</div><buttonid="add-to-cart-backpack">Add to cart</button></div></div>
The Products page HAS-A list of products. This object relationship is called Composition. In simpler terms, something is composed of another thing.
publicabstractclassBasePage{protectedWebDriverdriver;publicBasePage(WebDriverdriver){this.driver=driver;}}// Page Object
publicclassProductsPageextendsBasePage{publicProductsPage(WebDriverdriver){super(driver);// No assertions, throws an exception if the element is not loaded
newWebDriverWait(driver,Duration.ofSeconds(3)).until(d->d.findElement(By.className("header_container")));}// Returning a list of products is a service of the page
publicList<Product>getProducts(){returndriver.findElements(By.className("inventory_item")).stream().map(e->newProduct(e))// Map WebElement to a product component
.toList();}// Return a specific product using a boolean-valued function (predicate)
// This is the behavioral Strategy Pattern from GoF
publicProductgetProduct(Predicate<Product>condition){returngetProducts().stream().filter(condition)// Filter by product name or price
.findFirst().orElseThrow();}}
The Product component object is used inside the Products page object.
publicabstractclassBaseComponent{protectedWebElementroot;publicBaseComponent(WebElementroot){this.root=root;}}// Page Component Object
publicclassProductextendsBaseComponent{// The root element contains the entire component
publicProduct(WebElementroot){super(root);// inventory_item
}publicStringgetName(){// Locating an element begins at the root of the component
returnroot.findElement(By.className("inventory_item_name")).getText();}publicBigDecimalgetPrice(){returnnewBigDecimal(root.findElement(By.className("inventory_item_price")).getText().replace("$","")).setScale(2,RoundingMode.UNNECESSARY);// Sanitation and formatting
}publicvoidaddToCart(){root.findElement(By.id("add-to-cart-backpack")).click();}}
So now, the products test would use the page object and the page component object as follows.
publicclassProductsTest{@TestpublicvoidtestProductInventory(){varproductsPage=newProductsPage(driver);// page object
varproducts=productsPage.getProducts();assertEquals(6,products.size());// expected, actual
}@TestpublicvoidtestProductPrices(){varproductsPage=newProductsPage(driver);// Pass a lambda expression (predicate) to filter the list of products
// The predicate or "strategy" is the behavior passed as parameter
varbackpack=productsPage.getProduct(p->p.getName().equals("Backpack"));// page component object
varbikeLight=productsPage.getProduct(p->p.getName().equals("Bike Light"));assertEquals(newBigDecimal("29.99"),backpack.getPrice());assertEquals(newBigDecimal("9.99"),bikeLight.getPrice());}}
The page and component are represented by their own objects. Both objects only have methods for the services they offer, which matches the real-world application in object-oriented programming.
You can even
nest component objects inside other component objects for more complex
pages. If a page in the AUT has multiple components, or common
components used throughout the site (e.g. a navigation bar), then it
may improve maintainability and reduce code duplication.
Other Design Patterns Used in Testing
There are other design patterns that also may be used in testing. Discussing all of these is
beyond the scope of this user guide. Here, we merely want to introduce the
concepts to make the reader aware of some of the things that can be done. As
was mentioned earlier, many have blogged on this topic and we encourage the
reader to search for blogs on these topics.
Implementation Notes
PageObjects can be thought of as facing in two directions simultaneously. Facing toward the developer of a test, they represent the services offered by a particular page. Facing away from the developer, they should be the only thing that has a deep knowledge of the structure of the HTML of a page (or part of a page) It’s simplest to think of the methods on a Page Object as offering the “services” that a page offers rather than exposing the details and mechanics of the page. As an example, think of the inbox of any web-based email system. Amongst the services it offers are the ability to compose a new email, choose to read a single email, and list the subject lines of the emails in the inbox. How these are implemented shouldn’t matter to the test.
Because we’re encouraging the developer of a test to try and think about the services they’re interacting with rather than the implementation, PageObjects should seldom expose the underlying WebDriver instance. To facilitate this, methods on the PageObject should return other PageObjects. This means we can effectively model the user’s journey through our application. It also means that should the way that pages relate to one another change (like when the login page asks the user to change their password the first time they log into a service when it previously didn’t do that), simply changing the appropriate method’s signature will cause the tests to fail to compile. Put another way; we can tell which tests would fail without needing to run them when we change the relationship between pages and reflect this in the PageObjects.
One consequence of this approach is that it may be necessary to model (for example) both a successful and unsuccessful login; or a click could have a different result depending on the app’s state. When this happens, it is common to have multiple methods on the PageObject:
publicclassLoginPage{publicHomePageloginAs(Stringusername,Stringpassword){// ... clever magic happens here
}publicLoginPageloginAsExpectingError(Stringusername,Stringpassword){// ... failed login here, maybe because one or both of the username and password are wrong
}publicStringgetErrorMessage(){// So we can verify that the correct error is shown
}}
The code presented above shows an important point: the tests, not the PageObjects, should be responsible for making assertions about the state of a page. For example:
publicvoidtestMessagesAreReadOrUnread(){Inboxinbox=newInbox(driver);inbox.assertMessageWithSubjectIsUnread("I like cheese");inbox.assertMessageWithSubjectIsNotUnread("I'm not fond of tofu");}
could be re-written as:
publicvoidtestMessagesAreReadOrUnread(){Inboxinbox=newInbox(driver);assertTrue(inbox.isMessageWithSubjectIsUnread("I like cheese"));assertFalse(inbox.isMessageWithSubjectIsUnread("I'm not fond of tofu"));}
Of course, as with every guideline, there are exceptions, and one that is commonly seen with PageObjects is to check that the WebDriver is on the correct page when we instantiate the PageObject. This is done in the example below.
Finally, a PageObject need not represent an entire page. It may represent a section that appears frequently within a site or page, such as site navigation. The essential principle is that there is only one place in your test suite with knowledge of the structure of the HTML of a particular (part of a) page.
Summary
The public methods represent the services that the page offers
Try not to expose the internals of the page
Generally don’t make assertions
Methods return other PageObjects
Need not represent an entire page
Different results for the same action are modelled as different methods
Example
publicclassLoginPage{privatefinalWebDriverdriver;publicLoginPage(WebDriverdriver){this.driver=driver;// Check that we're on the right page.
if(!"Login".equals(driver.getTitle())){// Alternatively, we could navigate to the login page, perhaps logging out first
thrownewIllegalStateException("This is not the login page");}}// The login page contains several HTML elements that will be represented as WebElements.
// The locators for these elements should only be defined once.
ByusernameLocator=By.id("username");BypasswordLocator=By.id("passwd");ByloginButtonLocator=By.id("login");// The login page allows the user to type their username into the username field
publicLoginPagetypeUsername(Stringusername){// This is the only place that "knows" how to enter a username
driver.findElement(usernameLocator).sendKeys(username);// Return the current page object as this action doesn't navigate to a page represented by another PageObject
returnthis;}// The login page allows the user to type their password into the password field
publicLoginPagetypePassword(Stringpassword){// This is the only place that "knows" how to enter a password
driver.findElement(passwordLocator).sendKeys(password);// Return the current page object as this action doesn't navigate to a page represented by another PageObject
returnthis;}// The login page allows the user to submit the login form
publicHomePagesubmitLogin(){// This is the only place that submits the login form and expects the destination to be the home page.
// A seperate method should be created for the instance of clicking login whilst expecting a login failure.
driver.findElement(loginButtonLocator).submit();// Return a new page object representing the destination. Should the login page ever
// go somewhere else (for example, a legal disclaimer) then changing the method signature
// for this method will mean that all tests that rely on this behaviour won't compile.
returnnewHomePage(driver);}// The login page allows the user to submit the login form knowing that an invalid username and / or password were entered
publicLoginPagesubmitLoginExpectingFailure(){// This is the only place that submits the login form and expects the destination to be the login page due to login failure.
driver.findElement(loginButtonLocator).submit();// Return a new page object representing the destination. Should the user ever be navigated to the home page after submiting a login with credentials
// expected to fail login, the script will fail when it attempts to instantiate the LoginPage PageObject.
returnnewLoginPage(driver);}// Conceptually, the login page offers the user the service of being able to "log into"
// the application using a user name and password.
publicHomePageloginAs(Stringusername,Stringpassword){// The PageObject methods that enter username, password & submit login have already defined and should not be repeated here.
typeUsername(username);typePassword(password);returnsubmitLogin();}}
7.4.2 - Domain specific language
A domain specific language (DSL) is a system which provides the user with
an expressive means of solving a problem. It allows a user to
interact with the system on their terms – not just programmer-speak.
Your users, in general, do not care how your site looks. They do not
care about the decoration, animations, or graphics. They
want to use your system to push their new employees through the
process with minimal difficulty; they want to book travel to Alaska;
they want to configure and buy unicorns at a discount. Your job as
tester is to come as close as you can to “capturing” this mind-set.
With that in mind, we set about “modeling” the application you are
working on, such that the test scripts (the user’s only pre-release
proxy) “speak” for, and represent the user.
The goal is to use ubiquitous language. Rather than referring to “load data into this table” or
“click on the third column” it should be possible to use language such as “create a new account” or
“order displayed results by name”
With Selenium, DSL is usually represented by methods, written to make
the API simple and readable – they enable a report between the
developers and the stakeholders (users, product owners, business
intelligence specialists, etc.).
Benefits
Readable: Business stakeholders can understand it.
Writable: Easy to write, avoids unnecessary duplication.
Extensible: Functionality can (reasonably) be added
without breaking contracts and existing functionality.
Maintainable: By leaving the implementation details out of test
cases, you are well-insulated against changes to the AUT*.
Here is an example of a reasonable DSL method in Java.
For brevity’s sake, it assumes the driver object is pre-defined
and available to the method.
/**
* Takes a username and password, fills out the fields, and clicks "login".
* @return An instance of the AccountPage
*/publicAccountPageloginAsUser(Stringusername,Stringpassword){WebElementloginField=driver.findElement(By.id("loginField"));loginField.clear();loginField.sendKeys(username);// Fill out the password field. The locator we're using is "By.id", and we should
// have it defined elsewhere in the class.
WebElementpasswordField=driver.findElement(By.id("password"));passwordField.clear();passwordField.sendKeys(password);// Click the login button, which happens to have the id "submit".
driver.findElement(By.id("submit")).click();// Create and return a new instance of the AccountPage (via the built-in Selenium
// PageFactory).
returnPageFactory.newInstance(AccountPage.class);}
This method completely abstracts the concepts of input fields,
buttons, clicking, and even pages from your test code. Using this
approach, all a tester has to do is call this method. This gives
you a maintenance advantage: if the login fields ever changed, you
would only ever have to change this method - not your tests.
publicvoidloginTest(){loginAsUser("cbrown","cl0wn3");// Now that we're logged in, do some other stuff--since we used a DSL to support
// our testers, it's as easy as choosing from available methods.
do.something();do.somethingElse();Assert.assertTrue("Something should have been done!",something.wasDone());// Note that we still haven't referred to a button or web control anywhere in this
// script...
}
It bears repeating: one of your primary goals should be writing an
API that allows your tests to address the problem at hand, and NOT
the problem of the UI. The UI is a secondary concern for your
users – they do not care about the UI, they just want to get their job
done. Your test scripts should read like a laundry list of things
the user wants to DO, and the things they want to KNOW. The tests
should not concern themselves with HOW the UI requires you to go
about it.
*AUT: Application under test
7.4.3 - Generating application state
Selenium should not be used to prepare a test case. All repetitive
actions and preparations for a test case, should be done through other
methods. For example, most web UIs have authentication (e.g. a login
form). Eliminating logging in via web browser before every test will
improve both the speed and stability of the test. A method should be
created to gain access to the AUT* (e.g. using an API to login and set a
cookie). Also, creating methods to pre-load data for
testing should not be done using Selenium. As mentioned previously,
existing APIs should be leveraged to create data for the AUT*.
*AUT: Application under test
7.4.4 - Mock external services
Eliminating the dependencies on external services will greatly improve
the speed and stability of your tests.
7.4.5 - Improved reporting
Selenium is not designed to report on the status of test cases
run. Taking advantage of the built-in reporting capabilities of unit
test frameworks is a good start. Most unit test frameworks have
reports that can generate xUnit or HTML formatted reports. xUnit
reports are popular for importing results to a Continuous Integration
(CI) server like Jenkins, Travis, Bamboo, etc. Here are some links
for more information regarding report outputs for several languages.
Although mentioned in several places, it is worth mentioning again.
We must ensure that the tests are isolated from one another.
Do not share test data. Imagine several tests that each query the database
for valid orders before picking one to perform an action on. Should two tests
pick up the same order you are likely to get unexpected behavior.
Clean up stale data in the application that might be picked up by another
test e.g. invalid order records.
Create a new WebDriver instance per test. This helps ensure test isolation
and makes parallelization simpler.
7.4.7 - Tips on working with locators
When to use which locators and how best to manage them in your code.
In general, if HTML IDs are available, unique, and consistently
predictable, they are the preferred method for locating an element on
a page. They tend to work very quickly, and forego much processing
that comes with complicated DOM traversals.
If unique IDs are unavailable, a well-written CSS selector is the
preferred method of locating an element. XPath works as well as CSS
selectors, but the syntax is complicated and frequently difficult to
debug. Though XPath selectors are very flexible, they are typically
not performance tested by browser vendors and tend to be quite slow.
Selection strategies based on linkText and partialLinkText have
drawbacks in that they only work on link elements. Additionally, they
call down to querySelectorAll selectors internally in WebDriver.
Tag name can be a dangerous way to locate elements. There are
frequently multiple elements of the same tag present on the page.
This is mostly useful when calling the findElements(By) method which
returns a collection of elements.
The recommendation is to keep your locators as compact and
readable as possible. Asking WebDriver to traverse the DOM structure
is an expensive operation, and the more you can narrow the scope of
your search, the better.
7.4.8 - Test independency
Write each test as its own unit. Write the tests in a way that will not be
reliant on other tests to complete:
Let us say there is a content management system with which you can create
some custom content which then appears on your website as a module after
publishing, and it may take some time to sync between the CMS and the
application.
A wrong way of testing your module is that the content is created and
published in one test, and then checking the module in another test. This
is not feasible as the content may not be available immediately for the
other test after publishing.
Instead, you can create a stub content which can be turned on and off
within the affected test, and use that for validating the module. However,
for content creation, you can still have a separate test.
7.4.9 - Consider using a fluent API
Martin Fowler coined the term “Fluent API”. Selenium already
implements something like this in their FluentWait class, which is
meant as an alternative to the standard Wait class.
You could enable the Fluent API design pattern in your page object
and then query the Google search page with a code snippet like this one:
The Google page object class with this fluent behavior
might look like this:
publicabstractclassBasePage{protectedWebDriverdriver;publicBasePage(WebDriverdriver){this.driver=driver;}}publicclassGoogleSearchPageextendsBasePage{publicGoogleSearchPage(WebDriverdriver){super(driver);// Generally do not assert within pages or components.
// Effectively throws an exception if the lambda condition is not met.
newWebDriverWait(driver,Duration.ofSeconds(3)).until(d->d.findElement(By.id("logo")));}publicGoogleSearchPagesetSearchString(Stringsstr){driver.findElement(By.id("gbqfq")).sendKeys(sstr);returnthis;}publicvoidclickSearchButton(){driver.findElement(By.id("gbqfb")).click();}}
7.4.10 - Fresh browser per test
Start each test from a clean, known state.
Ideally, spin up a new virtual machine for each test.
If spinning up a new virtual machine is not practical,
at least start a new WebDriver for each test.
Most browser drivers like GeckoDriver and ChromeDriver will start with a clean
known state with a new user profile, by default.
WebDriverdriver=newFirefoxDriver();
7.5 - Discouraged behaviors
Things to avoid when automating browsers with Selenium.
7.5.1 - Captchas
CAPTCHA, short for Completely Automated Public Turing test
to tell Computers and Humans Apart,
is explicitly designed to prevent automation, so do not try!
There are two primary strategies to get around CAPTCHA checks:
Disable CAPTCHAs in your test environment
Add a hook to allow tests to bypass the CAPTCHA
7.5.2 - File downloads
Whilst it is possible to start a download
by clicking a link with a browser under Selenium’s control,
the API does not expose download progress,
making it less than ideal for testing downloaded files.
This is because downloading files is not considered an important aspect
of emulating user interaction with the web platform.
Instead, find the link using Selenium
(and any required cookies)
and pass it to a HTTP request library like
libcurl.
The HtmlUnit driver can download attachments
by accessing them as input streams by implementing the
AttachmentHandler
interface. The AttachmentHandler can then be added to the HtmlUnit WebClient.
7.5.3 - HTTP response codes
For some browser configurations in Selenium RC,
Selenium acted as a proxy between the browser
and the site being automated.
This meant that all browser traffic passed through Selenium
could be captured or manipulated.
The captureNetworkTraffic() method
purported to capture all of the network traffic between the browser
and the site being automated,
including HTTP response codes.
Selenium WebDriver is a completely different approach
to browser automation,
preferring to act more like a user.
This is represented in the way you write tests with WebDriver.
In automated functional testing,
checking the status code
is not a particularly important detail of a test’s failure;
the steps that preceded it are more important.
The browser will always represent the HTTP status code,
imagine for example a 404 or a 500 error page.
A simple way to “fail fast” when you encounter one of these error pages
is to check the page title or content of a reliable point
(e.g. the <h1> tag) after every page load.
If you are using the page object model,
you can include this check in your class constructor
or similar point where the page load is expected.
Occasionally, the HTTP code may even be represented
in the browser’s error page
and you could use WebDriver to read this
and improve your debugging output.
Checking the webpage itself is in line
with WebDriver’s ideal practice
of representing and asserting upon the user’s view of the website.
If you insist, an advanced solution to capturing HTTP status codes
is to replicate the behaviour of Selenium RC by using a proxy.
WebDriver API provides the ability to set a proxy for the browser,
and there are a number of proxies that will
programmatically allow you to manipulate
the contents of requests sent to and received from the web server.
Using a proxy lets you decide how you want to respond
to redirection response codes.
Additionally, not every browser
makes the response codes available to WebDriver,
so opting to use a proxy
allows you to have a solution that works for every browser.
7.5.4 - Gmail, email and Facebook logins
For multiple reasons, logging into sites like Gmail and Facebook
using WebDriver is not recommended.
Aside from being against the usage terms for these sites
(where you risk having the account shut down),
it is slow and unreliable.
The ideal practice is to use the APIs that email providers offer,
or in the case of Facebook the developer tools service
which exposes an API for creating test accounts, friends and so forth.
Although using an API might seem like a bit of extra hard work,
you will be paid back in speed, reliability, and stability.
The API is also unlikely to change,
whereas webpages and HTML locators change often
and require you to update your test framework.
Logging in to third party sites using WebDriver
at any point of your test increases the risk
of your test failing because it makes your test longer.
A general rule of thumb is that longer tests
are more fragile and unreliable.
WebDriver implementations that are
W3C conformant
also annotate the navigator object
with a WebDriver property
so that Denial of Service attacks can be mitigated.
7.5.5 - Test dependency
A common idea and misconception about automated testing is regarding a
specific test order. Your tests should be able to run in any order,
and not rely on other tests to complete in order to be successful.
7.5.6 - Performance testing
Performance testing using Selenium and WebDriver
is generally not advised.
Not because it is incapable,
but because it is not optimised for the job
and you are unlikely to get good results.
It may seem ideal to performance test
in the context of the user but a suite of WebDriver tests
are subjected to many points of external and internal fragility
which are beyond your control;
for example browser startup speed,
speed of HTTP servers,
response of third party servers that host JavaScript or CSS,
and the instrumentation penalty
of the WebDriver implementation itself.
Variation at these points will cause variation in your results.
It is difficult to separate the difference
between the performance of your website
and the performance of external resources,
and it is also hard to tell what the performance penalty is
for using WebDriver in the browser,
especially if you are injecting scripts.
The other potential attraction is “saving time” —
carrying out functional and performance tests at the same time.
However, functional and performance tests have opposing objectives.
To test functionality, a tester may need to be patient
and wait for loading,
but this will cloud the performance testing results and vice versa.
To improve the performance of your website,
you will need to be able to analyse overall performance
independent of environment differences,
identify poor code practices,
breakdown of performance of individual resources
(i.e. CSS or JavaScript),
in order to know what to improve.
There are performance testing tools available
that can do this job already,
that provide reporting and analysis,
and can even make improvement suggestions.
Using WebDriver to spider through links
is not a recommended practice. Not because it cannot be done,
but because WebDriver is definitely not the most ideal tool for this.
WebDriver needs time to start up,
and can take several seconds, up to a minute
depending on how your test is written,
just to get to the page and traverse through the DOM.
Instead of using WebDriver for this,
you could save a ton of time
by executing a curl command,
or using a library such as BeautifulSoup
since these methods do not rely
on creating a browser and navigating to a page.
You are saving tonnes of time by not using WebDriver for this task.
7.5.8 - Two Factor Authentication
Two Factor Authentication (2FA) is an authorization
mechanism where a One Time Password (OTP) is generated using “Authenticator”
mobile apps such as “Google Authenticator”, “Microsoft Authenticator”
etc., or by SMS, e-mail to authenticate. Automating this seamlessly
and consistently is a big challenge in Selenium. There are some ways
to automate this process. But that will be another layer on top of our
Selenium tests and not as secure. So, you should avoid automating 2FA.
There are few options to get around 2FA checks:
Disable 2FA for certain Users in the test environment, so that you can
use those user credentials in the automation.
Disable 2FA in your test environment.
Disable 2FA if you login from certain IPs. That way we can configure our
test machine IPs to avoid this.
8 - About this documentation
These docs, like the code itself, are maintained 100% by volunteers
within the Selenium community.
Many have been using it since its inception,
but many more have only been using it for a short while,
and have given their time to help improve the onboarding experience
for new users.
If there is an issue with the documentation, we want to know!
The best way to communicate an issue is to visit
https://github.com/seleniumhq/seleniumhq.github.io/issues
and search to see whether or not the issue has been filed already.
If not, feel free to open one!
Many members of the community
are present at the #selenium
Libera chat at Libera.chat.
Feel free to drop in and ask questions
and if you get help which you think could be of use within these documents,
be sure to add your contribution!
We can update these documents,
but it is much easier for everyone when we get contributions
from outside the normal committers.
8.1 - Copyright and attributions
Copyright, contributions and all attributions for the different projects under the Selenium umbrella.
The Documentation of Selenium
Every effort has been made to make this documentation
as complete and as accurate as possible,
but no warranty or fitness is implied.
The information provided is on an “as-is” basis.
The authors and the publisher shall have
neither liability nor responsibility to any person or entity
with respect to any loss or damages arising
from the information contained in this book.
No patent liability is assumed with respect
to the use of the information contained herein.
All code and documentation originating from the Selenium project
is licensed under the Apache 2.0 license,
with the Software Freedom Conservancy
as the copyright holder.
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
8.2 - Contributing to the Selenium site & documentation
Information on improving documentation and code examples for Selenium
Selenium is a big software project, its site and documentation are key
to understanding how things work and learning effective ways to exploit
its potential.
This project contains both Selenium’s site and documentation. This is
an ongoing effort (not targeted at any specific release) to provide
updated information on how to use Selenium effectively, how to get
involved and how to contribute to Selenium.
Contributions toward the site and docs follow the process described in
the below section about contributions.
The Selenium project welcomes contributions from everyone. There are a
number of ways you can help:
Report an issue
When reporting a new issues or commenting on existing issues please
make sure discussions are related to concrete technical issues with the
Selenium software, its site and/or documentation.
All of the Selenium components change quite fast over time, so this
might cause the documentation to be out of date. If you find this to
be the case, as mentioned, don’t hesitate to create an issue for that.
It also might be possible that you know how to bring up to date the
documentation, so please send us a pull request with the related
changes.
If you are not sure about what you have found is an issue or not,
please ask through the communication channels described at
https://selenium.dev/support.
We want to be able to run all of our code examples in the CI to ensure that people can copy and paste and
execute everything on the site. So we put the code where it belongs in the
examples directory.
Each page in the documentation correlates to a test file in each of the languages, and should follow naming conventions.
For instance examples for this page https://www.selenium.dev/documentation/webdriver/browsers/chrome/ get added in these
files:
Each example should get its own test. Ideally each test has an assertion that verifies the code works as intended.
Once the code is copied to its own test in the proper file, it needs to be referenced in the markdown file.
For example, the tab in Ruby would look like this:
The line numbers at the end represent only the line or lines of code that actually represent the item being displayed.
If a user wants more context, they can click the link to the GitHub page that will show the full context.
Make sure that if you add a test to the page that all the other line numbers in the markdown file are still
correct. Adding a test at the top of a page means updating every single reference in the documentation that has a line
number for that file.
Everything from the Creating Examples section applies, with one addition.
Make sure the tab includes text=true. By default, the tabs get formatted
for code, so to use markdown or other shortcode statements (like gh-codeblock) it needs to be declared as text.
For most examples, the tabpane declares the text=true, but if some of the tabs have code examples, the tabpane
cannot specify it, and it must be specified in the tabs that do not need automatic code formatting.
Contribution Mechanics
The Selenium project welcomes new contributors. Individuals making
significant and valuable contributions over time are made Committers
and given commit-access to the project.
This guide will guide you through the contribution process.
Step 1: Fork
Fork the project on GitHub
and check out your copy locally.
% git clone git@github.com:seleniumhq/seleniumhq.github.io.git
% cd seleniumhq.github.io
Dependencies: Hugo
We use Hugo and the Docsy theme
to build and render the site. You will need the “extended”
Sass/SCSS version of the Hugo binary to work on this site. We recommend
to use Hugo 0.110.0 or higher.
Please follow the Install Hugo
instructions from Docsy.
Step 2: Branch
Create a feature branch and start hacking:
% git checkout -b my-feature-branch
We practice HEAD-based development, which means all changes are applied
directly on top of dev.
Step 3: Make changes
The repository contains the site and docs. To make changes to the site,
work on the website_and_docs directory. To see a live preview of
your changes, run hugo server on the site’s root directory.
% cd website_and_docs
% hugo server
The project loads code from GitHub, if that code has been updated, and it isn’t
reflected in your preview, you can run hugo without the cache: hugo server --ignoreCache
See Style Guide for more information on our conventions for contribution
Step 4: Commit
First make sure git knows your name and email address:
Writing good commit messages is important. A commit message
should describe what changed, why, and reference issues fixed (if
any). Follow these guidelines when writing one:
The first line should be around 50 characters or less and contain a
short description of the change.
Keep the second line blank.
Wrap all other lines at 72 columns.
Include Fixes #N, where N is the issue number the commit
fixes, if any.
A good commit message can look like this:
explain commit normatively in one line
Body of commit message is a few lines of text, explaining things
in more detail, possibly giving some background about the issue
being fixed, etc.
The body of the commit message can be several paragraphs, and
please do proper word-wrap and keep columns shorter than about
72 characters or so. That way `git log` will show things
nicely even when it is indented.
Fixes #141
The first line must be meaningful as it’s what people see when they
run git shortlog or git log --oneline.
Step 5: Rebase
Use git rebase (not git merge) to sync your work from time to time.
% git fetch origin
% git rebase origin/trunk
Step 6: Test
Always remember to run the local server,
with this you can be sure that your changes have not broken anything.
Pull requests are usually reviewed within a few days. If there are
comments to address, apply your changes in new commits (preferably
fixups) and push to the same
branch.
Step 8: Integration
When code review is complete, a committer will take your PR and
integrate it on the repository’s trunk branch. Because we like to keep a
linear history on the trunk branch, we will normally squash and rebase
your branch history.
Communication
All details on how to communicate with the project contributors
and the community overall can be found at https://selenium.dev/support
8.3 - Style guide for Selenium documentation
Conventions for contributions to the Selenium documentation and code examples
Read our contributing documentation for complete instructions on
how to add content to this documentation.
Alerts
Alerts have been added to direct potential contributors to where specific content is missing.
{{<alert-content/>}}
or
{{<alert-content>}}
Additional information about what specific content is needed
{{</alert-content>}}
Which gets displayed like this:
Content Help
Note:
This section needs additional and/or updated content
Additional information about what specific content is needed
Our documentation uses Title Capitalization for linkTitle which should be short
and Sentence capitalization for title which can be longer and more descriptive.
For example, a linkTitle of Special Heading might have a title of
The importance of a special heading in documentation
Line length
When editing the documentation’s source,
which is written in plain HTML,
limit your line lengths to around 100 characters.
Some of us take this one step further
and use what is called
semantic linefeeds,
which is a technique whereby the HTML source lines,
which are not read by the public,
are split at ‘natural breaks’ in the prose.
In other words, sentences are split
at natural breaks between clauses.
Instead of fussing with the lines of each paragraph
so that they all end near the right margin,
linefeeds can be added anywhere
that there is a break between ideas.
This can make diffs very easy to read
when collaborating through git,
but it is not something we enforce contributors to use.
Translations
Selenium now has official translators for each of the supported languages.
If you add a code example to the important_documentation.en.md file,
also add it to important_documentation.ja.md, important_documentation.pt-br.md,
important_documentation.zh-cn.md.
If you make text changes in the English version, just make a Pull Request.
The new process is for issues to be created and tagged as needs translation based on
changes made in a given PR.
Code examples
All references to code should be language independent,
and the code itself should be placed inside code tabs.
To generate the above tabs, this is what you need to write.
Note that the tabpane includes langEqualsHeader=true.
This auto-formats the code in each tab to match the header name,
and ensures that all tabs on the page with a language are set to the same thing.
To ensure that all code is kept up to date, our goal is to write the code in the repo where it
can be executed when Selenium versions are updated to ensure that everything is correct.
This code can be automatically displayed in the documentation using the gh-codeblock shortcode.
The shortcode automatically generates its own html, so we do not want it to auto-format with the language header.
If all tabs are using this shortcode, set text=true in the tabpane and remove langEqualsHeader=true.
If only some tabs are using this shortcode, keep langEqualsHeader=true in the tabpane and add text=true
to the tab. Note that the gh-codeblock line can not be indented at all.
One great thing about using gh-codeblock is that it adds a link to the full example.
This means you don’t have to include any additional context code, just the line(s) that
are needed, and the user can navigate to the repo to see how to use it.
If you want your example to include something other than code (default) or html (from gh-codeblock),
you need to first set text=true,
then change the Hugo syntax for the tabto use % instead of < and > with curly braces:
This is preferred to writing code comments because those will not be translated.
Only include the code that is needed for the documentation, and avoid over-explaining.
Finally, remember not to indent plain text or it will rendered as a codeblock.
8.4 - Musings about how things came to be
Details mostly of interest to Selenium devs about how and why certain parts of the project were created
This is a work in progress. Feel free to add things you know or remember.
How did the Automation Atoms come about?
On 2012-04-04, jimevans asked on the #selenium IRC channel:
“What I wanted to ask you about was the history of the automation atoms. I seem to remember them springing fully formed, as if from the head of Zeus, and I’m sure that wasn’t the case. Can you refresh my memory as to how the concept happened?”
simonstewart then proceeded to tell us a nice little story:
Sure. Are we sitting comfortably? Then I’ll begin. (Brit joke, there)
Imagine wavy lines as the screen dissolves and we’re transported back to when selenium and webdriver were different projects. Before the projects merged, there was an awful lot of congruent code in webdriver. Congruent, but not shared. The Firefox driver was in JS. The IE driver was mostly C++. The Chrome driver was mostly JS, but different JS from the Firefox driver. And HtmlUnit was unique.
We then added Selenium Core to the mix. Yet more JS that did basically the same thing.
Within Google, I was becoming the TL of the browser automation team. And was corralling a framework of our own into the mix. Which was written in JS, and had once been based on Core before it span off on its own path.
So: multiple codebases, lots of JS doing more or less the same thing. And loads of bugs. Weird mismatches of behaviour in edge-cases.
*shudder*
So I had a bit of a think. (Dangerous, I know) The idea was to extract the “best of breed” code from all three frameworks (Core, WebDriver and the Google tool). Break them down into code that could be shared. “The smallest, indivisible unit of browser automation” .
Or “atoms” for short.
These could be used as the basis the everything. Consistent behaviour between browsers. and apis. The other important point was that the JS code in webdriver and core was grown organically. Which is a polite way of saying “I’d rather never edit it again”. Which is a polite way of saying that it was of dubious quality . In places.
So: high quality was important. And I wanted the code broken up into modules. Because editing a 10k LOC file isn’t a bright idea.
Within Google we had a library called Closure. Which not only allowed modularization, but “denormalization” of modules into a single file via compilation. And I knew it was being open sourced. So we started building the library in the google codebase. (Where we had access to the unreleased library, code review tools and our amazing testing infrastructure). Using Closure Library.
“dom.js” was probably the first file I wrote. (We can check). Greg Dennis and Jason Leyba joined in the fun. And the atoms have been growing ever since.
Technically, we should be calling anything outside of “javascript/atoms” molecules. But then we can’t say that we have atomic drivers. and use imagery from the 50s to describe them.
*sigh*
jimevans replied: “molecular drivers?”
And simonstewart finished with:
Indeed :) The idea is that the atoms are the lowest level. And we compose the atoms to conform to the WebDriver or RC apis in “javascript/{selenium,webdriver}-atoms” respecitively. And then suck those in as necessary.
A Story of Crazy-Fun
Simon Stewart :
So, let’s go back to the very beginning of the project
When it was me, on my own (the webdriver project, that is, not selenium itself) I knew that I wanted to cover multiple different languages, and so wanted a build tool that could work with all of them That is, that didn't have a built in preference for one that made working with other languages painful ant is java biased. As is maven. nant and msbuild are .net biased rake, otoh, supports nothing very well But, and this is key, any valid rake script is also a valid ruby program It's possible to extend rake to build anything So: rake it was The initial rake file was pretty small and manageable But as the project grew, so did the Rakefile Until there was only person who could deal with it (me), and even then it was pretty shaky So, rather than have a project that couldn't be built, I extracted some helper methods to do some of the heavy lifting Which made the Rakefile comprehensible again But they project kept. getting. bigger And the Rakefile got harder and harder to grok At the time, I was working at Google, who have a wonderful build system Google's system is declarative and works across multiple different languages consistently And, most important, it breaks up the build from a single file into little fragments I asked the OSS chaps at Google if it was okay to open source the build grammar, and they gave it the green light So we layered that build grammar into the selenium codebase With one minor change (we handle dictionary args) But that grammar sits on top of rake still, after all this time And there's a problem And that's that rake is single threaded So our builds are constrained to run serially We could use "multitask" types to improve things, but when I've tried that things got very messy, very fast So, our next hurdle is that crazyfun.rb is slow: we need to go faster Which implies a rewrite of crazyfun I'm most comfortable in java So, I've spiked a new version in java that handles the java and js compilation It's significantly faster But, and this is also important, it's a spike The code was designed to be disposable. Now that things have been proved out, I'd really like to do a clean implementation But I'm torn Do I "finish" the new, very fast crazyfun java enough to replace the ruby version?
A story of driver executeables
jimevans noob_einsteinsfo: alright, story time, then. are we sitting comfortably? then we'll begin. noob_einsteinsfo: back when i first started working on the project (circa 2010), the drivers for all of the browsers were built and maintained by the project. at the time, that meant IE, firefox, and chrome. all of those drivers were packaged as part of the selenium standalone server, and were also packaged in with the various language bindings. this was a conscious decision, so that if one were running locally, there would be no need for the java runtime on the machine just to automate a given browser. there were two factors that led to the development of browser drivers as separate executables. as a quick aside, remember that the webdriver philosophy is to automate the browser using the "best-fit" mechanism for that particular browser. for IE, that means using the COM interfaces; for firefox at the time, that meant using a browser extension; for chrome, it also meant a browser extension. so that meant that the IE driver was developed as a DLL in C++ that was loaded by the language bindings, and communicated with via whatever native-code mechanism was provided by the language (JNI for java, P/Invoke for .NET, ctypes for python, etc.). it also meant that the firefox driver was developed as a browser extension that was packaged inside the various language bindings, and extracted, and used in a profile in firefox. as i said, the IE driver was implemented as a DLL, loaded and communicated with using different mechanisms for different language bindings. the problem is that each of those language-specific mechanisms had different load/unload semantics. ruby, for example, would never call the windows FreeLibrary API after loading the DLL into memory, making multiple instances really challenging. *process* semantics, however, as in, starting, stopping, and managing the lifetime of a process on the OS, whatever the OS, are remarkably similar across all languages. so when the IE driver rewrite was completed in 2010, the development team (me) decided to make it a separate executable, so that the load/unload semantics could be consistent no matter what language bindings one was using. concurrently with this, the chromium team made the decision to follow opera's lead and provide a driver implementation for chrome. an implementation that they would develop, enhance, and maintain going forward, relieving the selenium project of the burden of maintaining a chrome driver.
XgizmoX and that driver is part of the browser?
jimevans XgizmoX: not really, but i believe there may be some smarts built into chrome itself that knows when it's being automated via chromedriver. one of the googlers would be a better person to ask about that. anyway, knowing the different in shared library (.dll/.so/.dynlib) loading semantics, the chromium team (with my encouragement) decided to release their chromedriver implementation as a separate executable. fast-forward a couple of years, and you begin to see the effort to make webdriver a w3c standard. a working group with the w3c created a specification (still in progress, but getting close to finished with the first version), which codified the behavior of webdriver, and how a browser should react to its methods. furthermore, it standardized the protocol used to communicate between language bindings and a driver for a particular browser. i can't emphasize how important and groundbreaking this was. because the w3c and the webdriver working group within it are made up of representatives from the browser vendors themselves, it ensures that the solution will be supported directly by the browser vendors. mozilla created their webdriver implementation (geckodriver) for firefox. the most efficient mechanism for distribution of that browser driver, while maintaining the proper semantics for the language bindings, was to ship as a separate executable. note, this is a gross oversimplification of the geckodriver architecture; the actual executable acts as a relatively thin shim, translating from the wire protocol of the spec to their internal marionette protocol but the point still stands. anyway, the landscape is currently evolving regarding browser-vendor-provided driver implementation. microsoft has one for edge, apple has one for safari (10 and above), the chromium team (largely staffed by googlers) has one for chrome, and now mozilla has one for firefox. given the limited utility of the legacy firefox driver going forward, breaking it out into a separate executable would be wasted effort. this is particularly so, since all of the communication bits that are normally handled by the executable (listening for and responding to http requests from the language bindings) are handled entirely by the browser extension. \ there's literally no need for the legacy firefox driver to be a separate executable. moreover, making it independent of a language runtime would be a significant portion of work (because a .NET shop might reasonably balk at being required to install, say, the java runtime just to automate firefox) so historically speaking, noob-einsteinsfo, that's the general reason for why separate executables have become the norm, and why that paradigm wasn't extended to include the legacy firefox driver. does that make sense? okay. now. about geckodriver. the tale of geckodriver is intimately bound with the status of the aforementioned w3c webdriver spec. level 1 of the specification is mostly done, though it took a number of years of effort to get there. it took a large effort from some very smart people (AutomatedTester among them) to mold the initial documentation of what the webdriver open source software (OSS) project did into proper specification language that could be interpreted and turned into actionable stuff by a browser vendor or other implementor. when beginning the geckodriver (nee marionette) project, mozilla decided to base their implementation on the spec, and only the spec, not following the OSS implementation. this created something of a chicken-and-egg problem, in that while the spec language wasn't completed, it couldn't be implemented. it's only been in the last six months or so that the language concerning the advanced user interactions api (the Actions class in java and .NET) has been made robust enough to actually implement. accordingly, that's the single biggest missing chunk of functionality in geckodriver at present. it wasn't implementable via the spec, so it hasn't been implemented. i do know that it's a very high priority for AutomatedTester and his team to get that implementation done and available. as for why geckodriver is mandatory, and the default implementation for automating firefox in 3.x, that also comes down to some decisions made by mozilla.
TheSchaf so i guess there is no other choice than to use the old FF as long as required features are missing WhereIsMySpoon TheSchaf: if you need those features, yes or use another browser TheSchaf well, moveTo and sendKeys should be pretty basic :p
jimevans TheSchaf: element.sendKeys works just fine. it's Actions.sendKeys that would be broken. in firefox version fortysomething (i misremember the exact version), there was a feature added that blocked browser extensions that hadn't been signed by the mozilla security team. remember that the legacy firefox driver was built as a browser extension? well, with that feature of the browser enabled, the legacy driver couldn't be loaded by the browser. now, for several versions of firefox, it was possible to disable this feature of the browser, and allow unsigned extensions to continue to be loaded. and selenium did this, by virtue of the settings used in the anonymous profile the bindings created when launching firefox. until firefox 48, at which point, it was no longer possible to disable loading of unsigned extensions. at that point, geckodriver was the only way forward for that. now, two more slight points, then i'll be done with story time. first, by nature of what the legacy driver extension does, it's not possible to get it to pass the certification process of the mozilla security team. we asked, were denied, and were told it wouldn't happen ever, full stop. and that's perfectly reasonable, since what that extension does is a security hole big enough to drive a whole fleet of lorries through. second, it turns out there may, in fact, be a way to privately sign the legacy extension so that it can be loaded and used privately by versions of firefox 48 and higher. that's still a less-than-ideal approach, because there's no way that our merry band of open source developers can know how to automate firefox better than the development teams at mozilla, who create the browser in the first place. i totally get the frustration that geckodriver doesn't have the full feature parity of the legacy implementation, especially when it feels like one is being forced to move to it. raging at the selenium project about that decision is directing one's ire in entirely the wrong direction. however, before going off and saying horrible things about mozilla's decisions, do know that mozilla has several people who are constantly engaged in the project, a few of them right here in this very channel (AutomatedTester, davehunt, to name two). i'm sure i've glossed over or mischaracterized some of the historical details of these things, and i'm happy to be corrected. i'm old, after all, and the memory isn't what it used to be. but that, my friends, is the (not so very) short history of why we have separate executables for drivers, and why geckodriver is the way forward, and why a move to it was necessary when the move was made even though some functionality was lacking.
jimevans feels like he's become an unofficial historian of the webdriver project